
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Joachim Daiber

Robust Parsing of Noisy Content

Institute of Formal and Applied Linguistics

Supervisor: Daniel Zeman, Univerzita Karlova
Gertjan van Noord, Rijksuniversiteit Groningen

Study programme: European Masters in Language
and Communication Technologies

Specialization: Mathematical Linguistics

2012 - 2013

Für meine Eltern Hans und Irmgard.

Anowledgements
First and foremost, I am deeply indebted to Gertjan van Noord, whose invaluable
suggestions and encouragement have kept me motivated to finish this work. I am
equally thankful to my supervisor in Prague, Daniel Zeman.
e EM LCT masters program has been a great experience for me and it would not
have been possible without the hard work and dedication by Markéta Lopatková and
Vladislav Kuboň in Prague, Gosse Bouma in Groningen and Hans Uszkoreit, Valia
Kordoni, Ivana Kruijff-Korbayova and Bobbye Pernice in Saarbrücken. I have learned
invalueable lessons troughout these two years and I hope that many more students
will be able to seize this opportunity.
Finally, I would like to thank Ke Tran Manh and Milos Stanojevic, who made my first
year in Prague very enjoyable and who inspired and motivated me, and Sibel, who
reminded me not to lose track of the bigger picture.

J D
Groningen, 2013

I declare that I carried out this master thesis independently, and only with the cited
sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University in Prague has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In …….. date ………… signature of the author

Název práce: Robust Parsing of Noisy Content

Autor: Joachim Daiber

Katedra: Ústav formální a aplikované lingvistiky

Vedoucí diplomové práce:
RNDr. Daniel Zeman, Ph.D. (Univerzita Karlova)
Prof. dr. Gertjan van Noord (Rijksuniversiteit Groningen)

Abstrakt: Ačkoli úspěšnost syntaktické analýzy (parsingu) doménově shodných tex-
tů se v posledních letech soustavně zvyšuje, texty mimo trénovací doménu a gramat-
icky problematické texty nadále vzdorují a často na nich pozorujeme výrazný pokles
v kvalitě. V této práci se zaměřujeme na analýzu „zašuměného“ vstupu pocházejícího
ze služeb, jako je Twier. Zkoumáme otázku, zda předzpracování textu založené na
strojovém překladu a neřízených normalizačních modelech může zvýšit úspěšnost
analýzy takových dat. Zkoumané postupy vyhodnocujeme na existujících testovacích
datech, kromě toho jsme vytvořili i vlastní data pro závislostní syntaktickou analýzu
zašuměných dat z Twieru. Ukazujeme, že normalizace textu kombinovaná s obec-
nými i doménově zaměřenými taggery může vést k významnému zlepšení kvality
parsingu.

Klíčová slova: závislostní syntax, syntaktická analýza, parsing, doménová adaptace

Title: Robust Parsing of Noisy Content

Author: Joachim Daiber

Department: Institute of Formal and Applied Linguistics

Supervisor:
RNDr. Daniel Zeman, Ph.D. (Univerzita Karlova)
Prof. dr. Gertjan van Noord (Rijksuniversiteit Groningen)

Abstract: While parsing performance on in-domain text has developed steadily in re-
cent years, out-of-domain text and grammatically noisy text remain an obstacle and
oen lead to significant decreases in parsing accuracy. In this thesis, we focus on
the parsing of noisy content, such as user-generated content in services like Twier.
We investigate the question whether a preprocessing step based on machine transla-
tion techniques and unsupervised models for text-normalization can improve parsing
performance on noisy data. Existing data sets are evaluated and a new data set for
dependency parsing of grammatically noisy Twier data is introduced. We show
that text-normalization together with a combination of domain-specific and generic
part-of-speech taggers can lead to a significant improvement in parsing accuracy.

Keywords: dependency syntax, parsing, domain adaptation

Contents

1 Introduction 1

2 Baground and Related Work 3
2.1 Dependency parsing . 3

2.1.1 Dependency grammar . 3
2.1.2 Data-driven dependency parsing 6
2.1.3 Maximum-spanning tree parsing 7

2.2 Parsing and domain adaptation . 9
2.2.1 Domain adaptation . 9
2.2.2 Methods for domain adaption 9

2.3 Parsing and the noisy-channel model 11
2.3.1 e noisy-channel model . 11
2.3.2 Sentence comprehension under noisy input 12

2.4 Parsing and social media content . 14
2.5 Text-normalization of social media content 15

3 Data Sets for Parsing of Noisy Content 16
3.1 Data sets for parsing of noisy content 16
3.2 Dependency parsing test set . 16

3.2.1 Acquisition and corpus statistics 16
3.2.2 Annotation decisions . 17

3.3 Evaluation metrics . 19
3.3.1 Aligned precision and recall 20
3.3.2 Statistical significance . 25

4 Part-of-Spee Tagging of Noisy Content 27
4.1 Domain-specific part-of-speech tagging 27
4.2 Combining multiple part-of-speech taggers 28

4.2.1 Universal part-of-speech tagset 28
4.2.2 N-best part-of-speech tagging 28

4.3 Evaluation . 29
4.3.1 Implementations . 29
4.3.2 Results and discussion . 30

5 Text-Normalization in Parsing of Noisy Content 32
5.1 Unsupervised lexical normalization 32

5.1.1 Automatic lexical normalization 32
5.1.2 Dictionary-based lexical normalization 34

i

5.1.3 Lexical normalization in dependency parsing of Twier data . 36
5.1.4 Results and discussion . 37

5.2 Text-normalization as machine translation 40
5.2.1 Statistical machine translation using phrase-based models . . 40
5.2.2 Corpora . 44
5.2.3 Methodology . 45
5.2.4 Results and discussion . 47

5.3 Twier-specific preprocessing . 49

6 Discussion and Conclusion 51
6.1 Evaluation . 51

6.1.1 Summary . 51
6.1.2 Error analysis . 52
6.1.3 Possible improvements . 55

6.2 Discussion . 55
6.3 Conclusion . 58

Bibliography 59

List of Tables 65

List of Figures 66

List of Algorithms 67

ii

CHAPTER I

Introduction

Syntactic parsing is a central task in many natural language processing applications,
and improvements in the complexity of popular parsing algorithms have been steadi-
ly increasing the task’s utility. e most successful parsing algorithms today are
based on statistical methods and require large manually annotated treebanks. Such
treebanks are generally built from texts of one or a small number of textual domains,
such as newswire texts in the case of the Wall Street Journal sections of the English
Penn treebank. e performance of a parser on in-domain text, i.e. text from the
same domain or from a domain similar to the domain of the training corpus, has im-
proved steadily in recent years. However, out-of-domain text, i.e. text not from the
training domain, and grammatically noisy text remain an obstacle and oen lead to
significant decreases in parsing accuracy. In this thesis, we focus on parsing of noisy
content, as user-generated content in services like Twier, so-called tweets. e term
noisy content here refers to the orthographic quality of the texts. In corpora such as
the Wall Street Journal sections of the Penn treebank, the textual content is collected
fromwell-edited newspaper articles, which were produced under few restrictions and
whose language is therefore particularly close to perceived or wrien orthographic
standard. On the other hand, texts in services like Twier, which are oen called
user-generated content, are produced under different conditions and restrictions. Usu-
ally, such texts are not proof-read and they are wrien quickly. Hence, there is an
abundance of non-conventional orthography, punctuation and case. e additional
constraints of this type of medium — tweets are restricted to 140 characters — lead
to the frequent usage of abbreviations and other word formation processes that can
help reduce the length of the text, such as the omission of vowels. Accordingly, we
use the term noisy to denote such deviations from the conventions used in corpora of
well-edited long-form articles.

As an example of what we regard as noisy text, consider the following sentence
from the test section of our data set.

(1) ppl are thinking that i wil expect something from someone but #fact is i dont
want anything because i wont expect anything from anyone

1

e example in (1) includes several of the issues mentioned previously: an abbrevi-
ation created by the omission of vowels (ppl), non-standard case, general deviations
from conventional spellings (wont, dont,wil), as well as Twier-specific tokens (#fact).
erefore, this thesis will be focused on methods for dealing with this kind of noise in
the syntactic parsing task. We will compare various strategies for adaptation, and ex-
plore whether a text-normalization step based on machine translation techniques—as
it has been successfully applied to other tasks such as machine translation and part-
of-speech tagging (e.g. Kaufmann [2010])—can be used for syntactic parsing as well.

Furthermore, unsupervised methods, which do not require parallel data, will be
explored, and we will investigate how such a preprocessing step can be integrated in
a dependency parser model (MST parser, McDonald et al. [2005]). We will test our
approach by comparing various parser configurations on existing data sets, as well
as on a new data set for dependency parsing of noisy content. Both the existing data
set and our new data set are based on tweets.

Common methods for domain adaptation in parsing work by retraining a parsing
model with a focus on the target domain. While this is a reasonable method in most
cases; in this thesis, we are particularly interested in the question of whether it is
possible to achieve significant improvements for the parsing of noisy content without
adapting the parser parsingmodel directly but by adapting the data before presenting
it to the parser while leaving the parser model intact.

e structure of this thesis will be as follows: In Chapter 2, we introduce the back-
ground and context of this thesis. Chapter 3 discusses existing data sets for parsing
of noisy content, followed by the introduction of a new data set for dependency pars-
ing of noisy data. Unlike previous data sets, we also include textual normalization
in the data set, and therefore, we also introduce a metric to be used in conjunction
with the data set. Chapter 4 discusses and evaluates issues in part-of-speech tagging
of noisy content. In Chapter 5, we discuss preprocessing steps and evaluate them
on an existing data set, as well as on the data set introduced in Chapter 3. Finally,
in Chapter 6, we present an overview of the results, perform an error analysis and
discuss the results and their meaning.

2

CHAPTER II

Background and RelatedWork

In this chapter, we outline the necessary background in the relevant literature, lay out
the relevance of the topic and embed it within the context of related topics. Firstly,
we present an overview of dependency parsing and popular algorithms for this task.
Secondly, we introduce the topic of domain adaptation in parsing. irdly, we briefly
summarize the relationship between parsing and the noisy-channel model that will
form the basis for the experiments we perform in the following chapters.

2.1 Dependency parsing

Dependency parsing is a method for the syntactic analysis of natural language text,
based on the theory of dependency grammar. Rather than being a single unified theo-
ry, dependency grammar is a tradition encompassing several theories, which recently
has gained additional popularity due to its value in various natural language process-
ing tasks, such as relation extraction (e.g. Culoa and Sorensen [2004]) and machine
translation (e.g. Shen et al. [2008]). Additionally, it is well-suited for the description
of languages with free word order [Kübler et al., 2009].

erefore, in the following section, we will briefly introduce dependency gram-
mar, and give an overview of the differences among its various representations.

2.1.1 Dependency grammar

While dependency grammar has a rich history reaching back as far as the descrip-
tions of the Sanskrit language, its modern tradition is believed to have begun with
the French linguist Lucien Tesnière. In contrast to phrase structure grammars, in de-
pendency grammars, the central means of describing linguistic structure is through
words or tokens that are linked by directed dependency relations. e elements of a
dependency relation are two words: the syntactically subordinate dependent and the
word on which it depends, called the head (or governor). Furthermore, each depen-
dency between twowords is labeled by the type of their relation, such as subject, direct
object or aribute. Consider, for example, the simple dependency tree in Figure 2.1.

3

....ROOT ..Peter ..likes ..Mary.

PRED

.
SBJ

.
OBJ

Figure 2.1: Simple dependency tree

In this example, likes is the head of both Peter and Mary and their dependency rela-
tions indicate that Peter is the subject (SBJ) and Mary is the object (OBJ) dependent
on the verb likes, while the verb itself is a dependent of the artificial ROOT node. e
ROOT node is inserted into the tree as a technical simplification to ensure that every
word has a syntactic head.

Formal definition

As we will rely on these definitions in the following chapters and sections of this the-
sis, here we introduce the formal definition of dependency trees and their properties
by following the formulation from [Kübler et al., 2009, p. 11].

A sentence S is a sequence of tokens S = w0w1...wn. e token w0 is treated
as the artificial root token, which we labeled ROOT in Figure 2.1. While the term
token is commonly used as a synonym for a word in a sentence, depending on the
language and conventions used, it does not have to be a full word but can represent
single morphemes or punctuation.

Dependency relations are the relations between two words in the sentence. R =

{r1, ..., rm} is the finite set of dependency relation types that can hold between any
two words. ere are no further assumptions about the set R, and the final set of
relations depends on the convention of the dependency format and the underlying
linguistic theory. In the example in Figure 2.1, the dependency types are displayed as
the labels of the arcs between the words: SBJ, OBJ and PRED.

In order to define dependency trees, which are a special type of dependency
graphs, we first need to define dependency graphs. A dependency graph can be de-
fined as the following (slightly adapting the definition from [Kübler et al., 2009, p.
12]): A dependency graph G = (V,A) is a labeled directed graph consisting of nodes
(vertices, V) and edges (arcs, A), such that the following holds for S = w0w1...wn

and the set of dependency types R:

1. V ⊆ {w0, w1, ..., wn}

2. A ⊆ V ×R× V

3. if (wi, r, wj) ∈ A then (wi, r
′, wj) ̸∈ A for all r′ ̸= r

4

An edge (wi, r, wj) ∈ A represents a dependency relation from the word wi to the
word wj with the dependency type r. In this dependency relation, wi is the head, and
wj is the dependent node. While the third condition disallows multiple dependency
relations between two words, it does not restrict words from having more than one
head. Most dependency grammar theories are based on dependency trees, which are
a further restriction of dependency graphs that we will define now.

A dependency tree is defined as a well-formed dependency graph. A dependency
graph G for a sentence S, and a dependency relation set R is called well-formed if it
is a directed tree originating in the root node and if it has a spanning node set (i.e.
a set of nodes containing all words of the sentence). A tree is an undirected graph
in which any two nodes are connected by one and only one path. is means that
a connected graph can only be a tree if it contains no cycles. In a directed tree, the
edges between nodes are directed.

In a dependency graph, while it is possible for a word to have multiple heads,
the tree property of dependency trees prohibits this. A node in the dependency tree
can only have one single incoming edge. If a node in a dependency tree would have
multiple heads, it would mean that there exist more than one paths between this node
and the root node and other nodes common to both paths.

Projective and non-projective dependency trees

A further restriction on dependency trees is the distinction between projective and
non-projective dependency trees. e following notations are required for the defi-
nition of projective and non-projective dependency trees:

− wi → wj indicates an unlabeled dependency relation between wi and wj in
a tree G = (V,A). Hence, wi → wj means that there is some dependency
relation type r ∈ R such that (wi, r, wj) ∈ A.

− wi →∗ wj indicates a reflexive transitive closure of the dependency relation in a
tree G = (V,A). is is defined as wi →∗ wj if and only if i = j (reflexive) or
both wi →∗ wi′ and wi′ → wj hold for some wi′ ∈ V .

An edge in a dependency tree is projective if and only if wi →∗ wk for all i < k < j

when i < j, or j < k < i when j < i. Following this definition, an edge (wi, r, wj)

is projective if there is a path from the head wi to all the words between the two
endpoints of the edge (i and j). Accordingly, a dependency tree G = (V,A) is pro-
jective if all (wi, r, wj) ∈ A are projective. A dependency tree that is not projective is
non-projective.

5

As examples of projective and non-projective dependency trees, consider the two
dependency trees in Figure 2.2 and Figure 2.3, which are dependency trees for com-
monly used English example sentence from the Penn treebank (both dependency trees
are taken from [Kübler et al., 2009, p. 17]).

....ROOT ..Economic ..news ..had ..little ..effect ..on ..önancial ..markets

ATT

.
SBJ

.

PRED

.

ATT

.

OBJ

.
ATT

.

ATT

.

PC

.

PU

Figure 2.2: A projective dependency tree

In this representation of dependency trees, with all words at the same level, the de-
pendency tree in Figure 2.2 can be drawn without crossing edges as all edges in this
tree are projective. For the dependency tree in Figure 2.3, however, it is not possi-
ble to draw the tree without crossing edges. For the dependency relation between
hearing and on, there is no path from the head of the relation hearing to the words in
between the two end-points of the edge, namely the words is and scheduled. Hence,
the edge between hearing and on is not projective.

....ROOT ..A ..hearing ..is ..scheduled ..on ..the ..issue ..today

PRED

.
ATT

.
SBJ

.

ATT

.

PC

.
ATT

.

VC

.

TMP

.

PU

Figure 2.3: A non-projective dependency tree

2.1.2 Data-driven dependency parsing

e task of a dependency parsing algorithm is to find the dependency structure for
the words in a sentence. In this dependency structure, words, including the artifi-
cial ROOT node, are connected by labeled dependencies. While the set of dependen-
cy labels is determined by the dependency representation format; most dependency

6

parsing algorithms are independent of the specific labels, and they can be trained for
various types of dependencies.

Parsing in general, and specifically dependency parsing, are nontrivial tasks since
the dependencies between the words of a sentence need to be determined while both
adhering to linguistic and syntactic constraints, and at the same time ensuring that
the resulting dependency graph is well-formed. is process is complicated by the
tendency of natural language to be inherently ambiguous. For a given sentence, a
parser may find multiple possible analyses, and as a result, it is required to make an
optimal decision taking into account both local syntactic constraints as well as the
complete analysis.

Data-drivenmethods for dependency parsing are based onmachine learning tech-
niques, most notably supervised methods. In supervised learning, a model is trained
on a set of manually annotated instances. Using this trained model, the structure of
new instances can be inferred. Hence, a data-driven parsing method must address
two problems: First, in the Learning task, a parsing model M is learned from a set
of annotated training instances (dependency trees). en, in the Parsing or Decoding
task, the parsing model M is used to produce the optimal dependency graph G for a
sentence S.

2.1.3 Maximum-spanning tree parsing

e learning and parsing tasks are implemented in various ways by different parsers.
Awell-known algorithm is theMaximumSpanning Tree parser (MST,McDonald et al.
[2005]). In the following section, we will briefly summarize how these two tasks are
approached in the MST parser.

Learning: Online Large Margin Learning e learning task in this parser is ap-
proached as a supervised learning problem for structured output. e score of a de-
pendency tree is factored as the sum of the scores of all edges in the tree. e score
for each edge is calculated as the dot product of a feature vector for the edge, and the
weight vector w.

s(i, j) = w · f(i, j)

Given a sentence x, the score for a dependency tree y is:

s(x,y) =
∑

(i,j)∈y

s(i, j)

7

To determine the weight vectorw, a learning algorithm based on the Margin Infused
Relaxed Algorithm (MIRA, Crammer and Singer [2003]) is used. MIRA is an online
learning algorithm similar to the online version of the basic Perceptron learning algo-
rithm [Rosenbla, 1958]. Unlike a batch learning method, the online algorithmworks
by updating the weight vector w aer each training instance it considers.

Pseudo-code for the MIRA algorithm is given in Algorithm 1. dt(x) is the set of
possible dependency trees for the sentence x. e algorithm runs for N iterations,
and during each of the iterations, it traverses all training instances, and determines
the optimal weight with regard to the loss function L. In the case of dependency
parsing, L is the number of words in the dependency tree with incorrect parent words
compared to the correct tree. Aer N iterations, the intermediate weights stored in
v are averaged, which has been shown to decrease the risk of the model overfiing
to the training data [Collins, 2002].

Algorithm 1 e MIRA learning algorithm
1 Training data: τ = {(xt, yt)}Tt=1

2 w0← 0
3 v← 0
4 i← 0
5 for n : 1..N do
6 for t : 1..T do
7 min ||w(i+1) −w(i)||
8 s.t. s(xt, yt)− s(xt, y

′) ≥ L(yt, y
′),∀y′ ∈ dt(xt)

9 v← v+w(i+1)

10 i← i+ 1

11 w← v/(N · T)

Decoding: Projective and non-projective trees In the MST parser, the task of find-
ing the optimal parse tree is formulated as finding a maximum spanning tree for the
words of the input sentence, by using the edge scores, which were introduced above
as weights within the graph. For the projective and the non-projective case, sepa-
rate decoding algorithms are used. e projective decoding algorithm is the Eisner
algorithm [Eisner, 1996], which is a frequently used O(n3) algorithm for maximum
projective spanning trees. In the non-projective case, the search for a suitable parse
tree is performed by searching for a maximum spanning tree in a directed acyclic
graph using the Chu-Liu-Edmonds algorithm [Chu and Liu, 1965, Edmonds, 1967].
Specifically, an implementation of the algorithm for dense graphs which has com-
plexity O(n2) is used.

8

2.2 Parsing and domain adaptation

2.2.1 Domain adaptation

According to the Concise Oxford Dictionary of Linguistics [Mahews, 2013], a do-
main in the cultural or in another seing is a situation, or a text form in which differ-
ent forms of speech may be appropriate; such as the different forms of speech in the
domain of a law court or of sports commentary, compared to the domain of a fam-
ily at home. In natural language processing, domains are conventionally delimited
collections of texts or literary genres such as news wire articles or biomedical litera-
ture. However, especially since the emergence of the World Wide Web has weakened
traditional forms of publishing and categorization, the definition and delimitation
of domains has become more difficult. Some authors go as far as arguing that on
the World Wide Web, each document is its own domain [e.g. McClosky et al., 2010].
Methods for domain adaption vary in the extent to which strict boundaries between
domains are assumed. In the following section, we will introduce the most widely
used methods for domain adaption in parsing.

2.2.2 Methods for domain adaption

In the relevant literature, it is commonly acknowledged that parsing accuracy de-
grades when a parsing model trained on a certain domain is applied to a different
domain. In order to investigate this issue, various methods and specific task seings
have been brought forward. In this section, we will briefly summarize the most im-
portant findings and methods; and will also outline how they relate to the topic of
this thesis.

One of the first issues requiring to be addressed in domain adaptation is the lack
of a precise definition of what a domain constitutes. Approaches differ in whether
they assume that domains are given or in whether they aempt to select data similar
to a target domain automatically.

Single source parser adaptation

e CoNLL 2007 Shared Task on dependency parsing [Nivre et al., 2007a] contained
a track on domain adaptation, in which the participants were asked to produce the
best possible parsing results across domains. Participants were provided with a large
syntactically annotated corpus from the source domain as well as data from three
target domains (biomedical abstracts, chemical abstracts and parent-child dialogues).

9

Like the source domain data, the target domain data contained full dependency trees;
however, the set of biomedical abstracts was only used as a development set, while
the set of chemical abstracts was used as a test set. Additionally, large unlabeled data
sets, i.e. data sets without any annotation, were provided as training data for each of
the target domains. Hence, in this seing only a single source domain, in this case
the Wall Street Journal sections of the Penn Treebank, was used.

e most successful systems participating in the domain adaptation part of the
CoNLL 2007 Shared Task used two major approaches: Firstly, in feature-based ap-
proaches, the features of the parsing system were either reduced to features mostly
valid across various domains, or features from the source domain were transferred to
the target domain [Nivre et al., 2007a]. And secondly, in ensemble-based approaches,
several parsers are trained, and run; and then their output was combined in a new
classifier. Other approaches included tree revision rules and filtering of the training
set based on similarity to the target domain.

Other methods that have gained in popularity recently are self-training and up-
training. Self-training is a method for effective parser adaptation that was introduced
by McClosky et al. [2006]. In self training, a parser is learned on labeled data, and
then it is used to annotate unlabeled data, possibly from the target domain. Together
with the original labeled data, the parsed unlabeled data is used aerwards as training
data for a new model. is process can be repeated several times. Intuitively, since
errors can propagate into the parsing model, one may expect this method to degrade
parsing accuracy. However, the authors found that the self-training method provided
a 12% error reduction over the previous best result of Wall Street Journal parsing.
e authors’ error analysis suggests that improvements were not obtained as a result
of beer unknown word handling; and furthermore, the accuracy for sentences of a
length between 20 and 50 words improved in general.

Uptraining [Petrov et al., 2010] is a method for domain adaptation similar to self-
training. is method is focused more on deterministic parsers, such as shi-reduce
dependency parsers. In uptraining, a deterministic parser is trained on the output
of a slower but more accurate constituent parser. e authors demonstrate that a
deterministic parser trained on 100.000 questions parsed by a more accurate pars-
er provides results comparable to a deterministic parser trained on 2.000 manually
annotated questions.

For closely related languages, Zeman and Resnik [2008] describe an approach to
parser adaptation to a new language in the special case that the target language—
which has only few resources available—is related to the source language. e authors

10

demonstrate that a de-lexicalization method works well in an experiment with data
from Danish and Swedish. In de-lexicalization task, the words of the source language
are replaced by their morphological tags in the training data, and the same tagset
is used when applied to the target language. Parsing the Swedish data with a de-
lexicalizedDanish parsingmodel achieved parsing performance equivalent to a parser
trained on 1546 Swedish gold trees.

Multiple source parser adaptation

McClosky et al. [2010] take a different approach for the parser adaptation problem by
introducing a new task, which include baseline systems for what they call multiple
source parser adaptation. In this setup, a system is trained on corpora from various do-
mains, and it learns the plain parsing models, as well as models of domain differences
and their influence on parsing accuracy. Given this knowledge, the parser applies a
linear combination of plain parsing models to new input.

Automatic selection of relevant training data

e approaches to domain adaption mentioned so far involve the assumption that
domains are given in advance. Plank and van Noord [2011] evaluate methods to select
training data similar to the target domain automatically, by using an unsupervised
method based on topic modeling. is method does not rely on predefined domains.
Instead, in order to gather relevant data for the particular target domain from the
source domain corpus, measures of domain similarity are used.

2.3 Parsing and the noisy-annel model

2.3.1 e noisy-annel model

e noisy-channel model [Shannon, 1948] is a mathematical model for communica-
tion that has been successfully applied to a wide variety of natural language process-
ing tasks. e original model was motivated by the wish to transmit the maximum
possible amount of information over a noisy means of communication [Manning and
Schütze, 1999, p. 60]. Today, this model is the basis for a number of successful ap-
proaches to problems such as machine translation and automatic spelling correction.
In the noisy-channel model, a message is generated by the information source and
passed trough a noisy channel. e receiver is given the resulting noisy data; and the
receiver’s goal is to recover, or in other words to decode, this noisy data in order to
determine the original message. Given observed dataO with the original source form

11

INFORMATION
SOURCE

MESSAGE

TRANSMITTER

SIGNAL RECEIVED
SIGNAL

RECEIVER

MESSAGE

DESTINATION

NOISE
SOURCE

Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 3 13 bits. A digit wheel on a desk computing machine has ten stable positions and
therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the base e is sometimes useful. The resulting units of information will be called natural units.
Change from the base a to base b merely requires multiplication by logb a.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information sourcewhich produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of time f t as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f x y t of two space coordinates and time, the light intensity at point x y and time t on a
pickup tube plate; (d) Two or more functions of time, say f t , g t , h t — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual channels in
multiplex; (e) Several functions of several variables— in color television the message consists of three
functions f x y t , g x y t , h x y t defined in a three-dimensional continuum— we may also think
of these three functions as components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting of a number of functions
of three variables; (f) Various combinations also occur, for example in television with an associated
audio channel.

2. A transmitter which operates on the message in some way to produce a signal suitable for trans-
mission over the channel. In telephony this operation consists merely of changing sound pressure
into a proportional electrical current. In telegraphy we have an encoding operation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex
PCM system the different speech functions must be sampled, compressed, quantized and encoded,
and finally interleaved properly to construct the signal. Vocoder systems, television and frequency
modulation are other examples of complex operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the signal from transmitter to receiver. It may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. The receiver ordinarily performs the inverse operation of that done by the transmitter, reconstructing
the message from the signal.

5. The destination is the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it is first
necessary to represent the various elements involved as mathematical entities, suitably idealized from their

2

Figure 2.4: Schematic diagram of a general communication system [Shannon, 1948,
p. 2]

S for which there exists some prior knowledge, this process is typically modeled by
using Bayes’ rule [Lease et al., 2006]:

ŝ = argmax
S

P(S|O) = argmax
S

P(O|S) P(S) (2.1)

2.3.2 Sentence comprehension under noisy input

In the psycholinguistics literature, a problem that is closely related to parsing is the
problem of human sentence comprehension. While most research in this area as-
sumes perfectly-formed input; Levy [2008] proposes a noisy-channel based model of
human sentence comprehension that can account for some of the outstanding prob-
lems in sentence processing. e model uses a generative probabilistic grammar. In
the standard case that the input string w is fully known, the grammar G can be used
to find the best parse T for w using

argmax
T

PG(T |w) (2.2)

However, in the case that the input string is not known, the formulation changes to
the following: Given some noisy evidence I and using the Bayes’ rule to find the
posterior for PG(T |w) and PG(T |I):

PG(T |I) =
P(T, I)
P(I) (2.3)

∝
∑
w

P(I|T,w) P(w|T) P(T) (2.4)

12

While not directly applying this model to parsing, Levy [2008] performs a psycholin-
guistics experiment in which he assumes a noisy environment distorting an original
uerance. A comprehender is presented a sentence w∗, which is known by the re-
searchers. However, the specific noisy representation I of this sentence is not known.
Based on the formula in (2.4), for the probability of the comprehender’s understood
sentence w, we have:

PG(w|I) ∝
∑
w

P(I|T,w) P(w|T) P(T) (2.5)

In the controlled experiment of Levy [2008], the relevant probability distribution is
P(w|w∗), which is given as

P(w|w∗) =

∫
I

PC(w|I,w∗)PT (I|w∗) dI (2.6)

en, since the comprehender does not know w∗, it is assumed that w∗ and w are
conditionally independent. Applying Bayes’ rule to 2.6, the following formulation is
proposed (PC is the probability distribution of the comprehender):

P(w|w∗) =

∫
I

PC(I|w)PC(w)

PC(I)
PT (I|w∗) dI (2.7)

= PC(w)

∫
I

PC(I|w)PT (I|w∗)

PC(I)
dI (2.8)

∝ PC(w)Q(w,w∗) (2.9)

Q(w,w∗) in (2.9) is proportional to the integral in (2.8) and given some of the exper-
iment’s assumptions; it is a symmetric, non-negative function of w and w∗. In the
rest of the paper,Q(w,w∗) is implemented as a simple Levensthein distance measure
calculated via a token-based finite-state automaton.

One of the arguments that is presented as supporting this model comes from a
simple prediction the model makes: the prior knowledge PC(w) of the comprehen-
der can overwrite the actual linguistic input. Hence, a sentence can be interpreted
as meaning something else than it was originally expressed to mean. is is a nec-
essary requirement of such a model: A human copy editor, for example, is without a
question, able to read and correct erroneous writing. Non-noisy models of sentence
processing are able to cover this issue in cases where the sentence is ungrammati-

13

cal; however, the noisy model can also account for cases where the sentence is fully
grammatical but the comprehender can still not process the sentence. is is the case
in certain garden path sentences, as in the following example from Levy [2008]:

(1) a. While the man hunted the deer ran into the woods.
b. While the man hunted it the deer ran into the woods.

In this case, both sentences are grammatical sentences. For the sentence in (1), there
is a grammatical reading; however, it is ambiguous whether the deer is the object
of the verb hunted, or the subject of the verb ran. In the case that it is read as the
object of hunted, the ran will miss a subject, and the comprehender would re-read
the sentence as it “leads nowhere”. However, experiments in which participants are
given this sentence have shown that a large number of participants initially perceive
the deer as the object of hunted. Non-noisy models of sentence processing would
not predict this; however, it can be explained by the noisy model that can assume an
underlying sentence such as the sentence in (1).

Note the similarity of the final model in (2.9) to well-established noisy-channel
methods for spelling correction, such as Kernighan et al. [1990], where a correction c

for a text t is found by maximizing P(c) P(t|c).

2.4 Parsing and social media content

A prime example of noisy content is the content of social media services such as
Twier. ere has been a surge of interest in Twier since it provides a steady, real-
time source of personal and news-like content from users all over the globe. Twier
data has been used in a multitude of tasks, such as predicting stock market trends or
social and political science research. It has also been used for predicting the spread
of infectious diseases based on users’ uerances and exchanges indicating symptoms
of illness (e.g. Hirose and Wang [2012] and Sadilek et al. [2012]).

Foster et al. [2011] treat parsing of Twier content as a domain adaptation task
and use a combination of self-training and uptraining to adapt a WSJ-trained version
of the Malt parser [Nivre et al., 2007b] for use on Twier data. eir adaptations are
tested on a small treebank. ey found that while the unadapted parser had low per-
formance, adaptation via uptraining and self-training improved parsing performance
significantly. Additionally, it was observed that performance of the necessary sub-
tasks such as part-of-speech tagging already degraded significantly on the Twier
data.

14

2.5 Text-normalization of social media content

In other natural language processing tasks, such as machine translation or entity link-
ing, researchers have approached the processing of social media content by perform-
ing unsupervised or semi-supervised text-normalization as a preprocessing step be-
fore an actual application. ere are both supervised and unsupervised methods for
performing this task. In the following section, we will give a brief overview of these
methods and touch upon their restrictions.

e majority of unsupervised models for text-normalization are based on the
noisy-channel model. For the related task of text message normalization, Cook and
Stevenson [2009] present a method in which they model P (S|O), i.e. the probability
of the original source form S given the observed data O, by analyzing and modeling
common word formation processes in their data. ese processes include stylistic
variations, subsequence abbreviations and prefix clippings. Han and Baldwin [2011]
propose a simple normalization method, in which a classifier detects real out-of-
vocabulary tokens and a mixture of features similar to Cook and Stevenson [2009]
is used to find the best suggested correction for a token classified as a misspelling of
an in-vocabulary word. e authors simplified and improved this system further in
Han et al. [2012], replacing it by a dictionary substitution method. e substitution
dictionary can be gathered before the actual system is applied. We will return to this
method in Section 5.1.

Starting with Aw et al. [2006] for text message normalization and continuing with
Kaufmann [2010] for Twier messages, the text-normalization task has also been
treated as a supervised translation task from noisy language into clean language. Re-
ducing this problem to the problem of machine translation enables the use of a set
of existing methods and tools for statistical machine translation, such as the Moses
toolkit [Koehn et al., 2007] for phrase-based machine translation. Based on the re-
sources available from Aw et al. [2006] and an additional, manually created parallel
corpus, Raghunathan and Krawczyk [2009] perform text message normalization by
using the Moses toolkit.

Kaufmann [2010] performs experiments showing that with minimal additional
preprocessing, the same parallel data that is used for text message normalization can
also be used to normalize Twier data. is data consists of parallel corpora of man-
ually normalized text messages. As with the other papers, the method is evaluated
using the BLEU evaluation metric [Papineni et al., 2002].

15

CHAPTER III

Data Sets for Parsing of Noisy Content

In this chapter, we briefly introduce existing data sets relevant to the topic of this the-
sis and introduce a new data set for dependency parsing of noisy content. With it, we
introduce an evaluation metric and illustrate its relationship to common evaluation
metrics for dependency parsing.

3.1 Data sets for parsing of noisy content

In order to evaluate domain adaption to Twier data, Foster et al. [2011] created a
small test treebank consisting of syntactically annotated sentences taken from tweets.
e treebank was created as a selection of 519 sentences from a corpus of 60 million
tweets from Bermingham and Smeaton [2010], whichwas based onwork on detecting
themes and topics in Twier messages. is corpus is restricted to tweets classified
as belonging to any of 50 topics, such as politics, business, sports and entertainment.
Since the focus of this thesis is on noisy content, we aim not to restrict ourselves to
fixed topics and create a small treebank which aims to be representative of everyday
Twier language.

3.2 Dependency parsing test set

To achieve this goal, we have created a new dependency parsing test set consisting
of sentences retrieved from Twier messages that were manually annotated with de-
pendency structure. Here, we provide an overview of the annotation decisions and
elaborate on themeans of collecting the data with the goal of creating a representative
sample of the language used in Twier messages.

3.2.1 Acquisition and corpus statistics

We collected all tweets within a period of 24 hours from January 07, 2012 00:00 until
23:59 GMT. To avoid possible biases of language identification and topic classification
tools towards well-formed language, we manually classified the tweets in random

16

order into English and non-English tweets until we reached a reasonably sized corpus
of tweets classified as English. We then manually split this corpus into sentences and
randomly selected 250 sentences as a development set and 250 sentences as a test set.
Properties of the test and development set compared to the test and development set
of Foster et al. [2011] are listed in Table 3.1. e out-of-vocabulary rate for tokens
and types has been calculated against the English dictionary of the GNU Aspell spell
checker.¹

Sentence length Token length OOV rate
Corpus # sent. Mean Med. Std Mean Med. Std Tokens Types
Dev. 250 9.608 8 5.65 4.27 4 2.61 0.332 0.440
Test 250 9.420 8 5.30 4.40 4 2.65 0.340 0.444

Foster dev. 269 11.14 10 6.41 4.00 4 2.405 0.344 0.328
Foster test 250 11.36 10 6.79 4.10 4 2.462 0.342 0.331

Table 3.1: Properties of our test and development sets compared with the data set
from Foster et al. [2011]

3.2.2 Annotation decisions

e sentences in both the development and test set were normalized to standard
spelling; missing words that are necessary for the comprehension of the sentence
were inserted; and abbreviations and contractionswere extendedwhen it was deemed
relevant. e goal of this normalization was to leave the original tokens intact and
not to replace them by their normalizations directly. Hence, we keep both the origi-
nal tokens and the normalized versions of the sentences and create word alignments
showing the relation between the original and normalized text.

Text-normalization

Abbreviations and slang expressions have been extended whenever necessary for
syntactic reasons. Examples include instances such as “cu”, used as the short form
of see and you, which as a single token would include both the verb and the object of
the sentence.

Punctuation has only been inserted if it was necessary to disambiguate the mean-
ing of the sentence, and capitalization has only been corrected to preserve the case
of proper nouns. Emoticons, such as ‘:-)‘, have been kept intact and tagged with the
part-of-speech tag UH (interjection). During the annotation, a frequently occurring

¹ http://aspell.net/

17

http://aspell.net/

phenomenon was the occurrence of zero copula, i.e. a copula verb is not realized in
the sentence.

..

..∅ ..RT ..Username ..why ..you ..assuming ..I ..still ..like ..my ..ex ..? .

..∅ ..RT ..Username ..why ..are ..you ..assuming ..I ..still ..like ..my ..ex ..? .

Figure 3.1: Example of a zero copula annotation

We annotated these occurrences by inserting the copula verb in the normalized ver-
sion of the sentence as illustrated in an example sentence and its aligned normaliza-
tion in Figure 3.1.

e most frequent insertions and replacements in the test section of the data set
are listed in Table 3.2.

Replacement Frequency

u -> you 12
∅ -> are 6
its -> it ’s 4
& -> and 4
ur -> your 3
ta -> to 3
ppl -> people 3

Insertion Frequency

∅ -> are 6
∅ -> is 2
∅ -> this 1
∅ -> a 1

Table 3.2: Common replacements and insertions in the test section of the data set

Dependency annotation

e normalized tokens of the test and development set were automatically parsed
using a generative phrase structure parser,² and then converted to dependencies.
Both part-of-speech tags and dependency annotations were then manually correct-
ed in two passes. e dependency annotations use the guidelines and format from
the CoNLL-X shared task on multilingual dependency parsing [Buchholz and Mar-
si, 2006]. Figure 3.2 depicts part of a gold standard dependency graph including the
alignments to the original tokens.

² https://code.google.com/p/berkeleyparser/

18

https://code.google.com/p/berkeleyparser/

....If ..you ..’re ..between ..the ..ages ..of ..15 ..to ..35 ..and

ROOT

.

SUB

.
SBJ

.

ADV

.

PMOD

.
NMOD

.
NMOD

.

PMOD

.

DEP

.
DEP

.

COORD

.

If

.

ur

.

between

.

the

.

ages

.

of

.

15

.

to

.

35

.

n

.

...

Figure 3.2: Example of a gold standard dependency graph with alignments

Twitter-specific syntax

For Twier-specific syntax in the corpus, the following guidelines were applied: User
names at the beginning of a sentence that do not fulfill a syntactic role, e.g. as the
subject, are aached to the main verb using the DEP dependency relation, which in
the CoNLL format is the dependency type for unclassified relations.

(1) Username happy birthday Sir

(2) Username is my guest today

e occurrence of Username in (1) is an example of this phenomenon. On Twier, the
usage of a user name at the beginning of a tweet serves the purpose of notifying the
person that the uerance is directed at them. In (2) in contrast, the user name is part
of the actual sentence.

RT and similar markers (RT indicates a retweet, akin to a direct quotation) are
equally aached to the main verb using the dependency relation DEP.

(3) RT Username Why can’t my summer vacation be like Phineas & Ferbs?

Hashtags such as #decisionsdecisions in (4) indicating the topic of a tweet are
equally aached to the main verb using the DEP dependency type.

(4) thinking about going back to school tomorrow #decisionsdecisions

3.3 Evaluation metrics

Since alignments between the gold standard and the original tokens are included and
both insertions and deletions should be possible, we cannot directly use accuracy as a

19

measure for evaluation. To calculate the unlabeled or labeled accuracy for two depen-
dency trees, the head and dependency relation of each word in the gold dependency
tree are compared to the head and dependency relation of the corresponding word
in the predicted dependency tree. In the case of data set introduced here, there may
not be a direct one-to-one correspondance between the predicted tree and the gold
tree. Hence, we allow the parser to make any insertions, deletions and modifications
to the tokens under the assumption that it provides an alignment between the modi-
fied tokens and the original tokens. e evaluation is then performed using a metric
based on precision and recall values calculated using these alignments. is metric
will be introduced and defined in the remainder of this section.

3.3.1 Aligned precision and recall

Based on the normalized side of the gold standard and the parser’s aligned prediction,
we then calculate precision, recall and F1 score for dependencies (3.1–3.4). We base
the evaluation metric on the standard definitions of precision and recall, which is
widely used in information retrieval and various other fields. In (3.1) and (3.2), TP
is the number of true positive results, FP is the number of false positive results, and
FN is the number of false negative results. e F1 measure is the harmonic mean of
precision and recall.

precision =
TP

TP+ FP
(3.1)

recall =
TP

TP+ FN
(3.2)

Fβ = (1 + β2) · precision · recall
β2 · precision+ recall

(3.3)

F1 = 2 · precision · recall
precision+ recall

(3.4)

In the following, we formalize the metric based on these definitions of precision and
recall. As introduced previously in Section 2.1.1, given a sentence S = w0w1...wn,
where w0 is the root node, a dependency graph is a set G = ⟨V,A⟩ of vertices V and
arcs A. A dependency tree is a dependency graph exhibiting the property of being
well-formed.

Definition

Let P be the set of quintuples ⟨SO, DP , DG, aP , aG⟩ for the whole test set. Each
quintuple consists of the following elements:

20

− the original sentence SO

− a predicted dependency tree DP = ⟨VP , AP ⟩

− a gold dependency tree DG = ⟨VG, AG⟩

− an alignment function aP for the predicted tokens

− an alignment function aG for the gold tokens

A sentence has the form of a sequence of tokens S = w0, w1, ..., wn. For each parsed
dependency tree SO is the sequence of original, non-normalized tokens. And, given
a predicted dependency treeDP , and a gold dependency treeDG; SP is the sequence
of tokens for the dependency tree DP , and let SG is the sequence of tokens for the
gold dependency tree DG.

ere are two alignment functions aG and aP , which map the gold tokens in SG

to the original tokens in SO, and the predicted tokens in SP to the original tokens
in SO. e alignment function aG : j → i maps a token SG

j from the gold part to
its corresponding original token SO

i , and the alignment function aP : j → i maps a
token SP

j from the predicted part to its corresponding original token SO
i .

In the case of an insertion, the new token cannot be aligned to any of the original
tokens in SO. erefore, insertions are modeled as a mapping to an artificial NULL
token. For example, assume that SO is the sentence “u da boss”, and the predicted
sentence SP is the sentence “you are the boss”. In this case, aP would provide the
following mapping (we replace indices with their corresponding tokens for readabil-
ity and use→ to indicate an alignment): you→ u, are→ NULL, the→ da and boss→
boss.

Based on the set P of quintuples ⟨SO, DP , DG, aP , aG⟩, we calculate the total
number of true positive (TP), false positive (FP) and false negative (FN) dependency
relations as follows:

For each gold dependency tree DG = ⟨VG, AG⟩ and each predicted dependency tree
DP = ⟨VP , AP ⟩, let MG and MP be the set of dependency relations mapped to the
original tokens in SO:

MG = {⟨aG(i), aG(j)⟩ | ⟨wi, r, wj⟩ ∈ AG} (3.5)

MP = {⟨aP (i), aP (j)⟩ | ⟨wi, r, wj⟩ ∈ AP} (3.6)

21

en, we can determine the set of true positive dependencies as the intersection of
MG and MP :

TP =
∑

⟨SO,DP ,DG,aP ,aG⟩∈P

|MG ∩MP | (3.7)

e set of false positive dependencies is the set of all predicted dependencies without
all correct dependencies:

FP =
∑

⟨SO,DP ,DG,aP ,aG⟩∈P

|MP \MG| (3.8)

And, the set of false negative dependencies is the set of all gold dependencies without
the predicted dependencies:

FN =
∑

⟨SO,DP ,DG,aP ,aG⟩∈P

|MG \MP | (3.9)

Labeled dependencies

While the presented measure is for unlabeled dependency relations, it can straight-
forwardly be extended to labeled dependencies by replacing the head-modifier pair
in MP and MG with a triple also containing the dependency type:

M ′
G = {⟨aG(i), r, aG(j)⟩ | ⟨wi, r, wj⟩ ∈ AG} (3.10)

M ′
P = {⟨aP (i), r, aP (j)⟩ | ⟨wi, r, wj⟩ ∈ AP} (3.11)

Issues

Note that the definition of MG and MP in (3.5) and (3.6) involve a simplification: a
dependency relation a is treated as equivalent to another dependency relation b if the
head of a maps to the same original token as the head of b and if the dependent of a
maps to the same original token as the dependent of b. is assumption makes the
computation of the score straightforward and does not require the predicted tokens
and gold tokens mapping to the same original token to be aligned individually, which
would require the use of heuristics.

One problem, however, is that this simplification may produce incorrect results
in a very specific case: As an example, assume that SO = ⟨ ur, da, boss ⟩ and the
predicted tokens are equivalent to the gold tokens SP = SG = ⟨ you, are, the, boss ⟩.
In this case, both aP and aG would consist of the following mapping: you→ ur, are→

22

ur, the→ da and boss→ boss. Accordingly,MG andMP would contain the following
pairs (replacing indiceswith tokens for readability, and in the format ⟨head,modifier⟩
as before):

MP = MG = {⟨ROOT, ur⟩, ⟨ur, ur⟩, ⟨ur,boss⟩, ⟨boss,da⟩} (3.12)

e problem with using this set for comparison is that it is not able to distinguish
which of the tokens mapping to ur is part of the dependency relation. For example,
the set MP can be produced equally using the following incorrect dependency tree
over the normalized tokens ⟨ you, are, the, boss ⟩:

{⟨ROOT, you⟩, ⟨you, are⟩, ⟨you,boss⟩, ⟨boss, the⟩} (3.13)

While this means that in very specific cases, this measure can count an incorrect
dependency tree as correct, we do not consider this case very likely and prefer this
simplification to the problems that would be introduced by heuristically aligning to-
kens mapping to the same original token. is problem can be mitigated further by
evaluating labeled dependencies since in this case, additional to the dependency edge,
the type of the dependency relation is also considered.

Relationship to unlabeled and labeled accuracy

In this thesis, aligned precision and recall is applied in cases where the parser is al-
lowed to insert, delete or split any tokens where necessary. However, there is also
the case that neither the gold standard nor the parser use any insertions or deletions.
In this case, the mapping between the tokens and both the gold dependency tree and
the predicted dependency tree is a 1-to-1 mapping. is case occurs for example,
when evaluating a standard CoNLL format data set like the test set from Foster et al.
[2011] against a parser that does not insert, split or delete tokens. In this specific
case where only 1-to-1 mappings exist between the original tokens and nodes of the
gold and predicted tree, the unlabeled and labeled aligned F1 scores are equivalent to
unlabeled and labeled accuracy. We will show this in the following section for the
case of labeled dependencies. e case of unlabeled dependencies is analogous.

As introduced previously,AG andAP are the sets of dependency edges ⟨wi, r, wj⟩
for the dependency trees DG and DP , where each edge represents a dependency re-
lation with label r between the word wi and the word wj .

For the set of gold and predicted dependency trees, the labeled accuracy can be

23

calculated as follows:

accuracy =
∑

⟨SO,DP ,DG,aP ,aG⟩∈P

|AG ∩ AP |
d

(3.14)

e calculation of accuracy assumes that there is a 1-to-1 mapping between the input
tokens and the nodes of the gold dependency tree and the predicted dependency tree,
hence d = |AG| = |AP |. Assuming wi and wj are unique identifiers, the formula can
be re-wrien as:

accuracy =
|CG ∩ CP |
|CG|

=
|CG ∩ CP |
|CP |

(3.15)

where CG and CP are the sets of dependency relations for the whole corpus:

CG =
∪

⟨SO,DP ,DG,aP ,aG⟩∈P

AG (3.16)

CP =
∪

⟨SO,DP ,DG,aP ,aG⟩∈P

AP (3.17)

Hence, the accuracy is the percentage of dependency relations that were predicted
correctly.

In our definition of aligned precision and recall, we assume two alignment func-
tions aG and aP and the two sets M ′

P and M ′
G for labeled dependencies were defined

as:

M ′
G = {⟨aG(i), r, aG(j)⟩ | ⟨wi, r, wj⟩ ∈ AG} (3.18)

M ′
P = {⟨aP (i), r, aP (j)⟩ | ⟨wi, r, wj⟩ ∈ AP} (3.19)

Since we are considering only the case, where there is a 1-to-1 alignment between
the original tokens and the gold and predicted nodes, aP and aG are 1-to-1 functions
(injective functions). Because aP and aG are injective functions, M ′

G and M ′
P can

equally be formulated as M ′
G = AG and M ′

P = AP in this particular case.
Technically, AG and AP would not necessarily have to contain the exact same to-

kens (wi). For example, a predicted token could be normalized differently than in the
gold standard dependency tree. However, since aG and aP are injective functions, it
is possible to simply replace each token inAG andAP with its corresponding original
token according to aP and aG to ensure equivalence.

Accordingly, the definitions of TP, FP and FN for the case that there are only 1-to-1

24

alignments are equivalent to the following:

TP =
∑

⟨SO,DP ,DG,aP ,aG⟩∈P

|AG ∩ AP | = |CG ∩ CP | (3.20)

FP =
∑

⟨SO,DP ,DG,aP ,aG⟩∈P

|AP \ AG| = |CP \ CG| (3.21)

FN =
∑

⟨SO,DP ,DG,aP ,aG⟩∈P

|AG \ AP | = |CG \ CP | (3.22)

Using the definitions for TP, FP and FN from above, precision and recall are:

precision =
TP

TP+ FP
=

|CG ∩ CP |
|CG ∩ CP |+ |CP \ CG|

=
|CG ∩ CP |
|CP |

(3.23)

recall =
TP

TP+ FN
=

|CG ∩ CP |
|CG ∩ CP |+ |CG \ CP |

=
|CG ∩ CP |
|CG|

(3.24)

Recall that the definition of accuracy was accuracy = |CG∩CP |
|CG| = |CG∩CP |

|CP | , hence we
have precision = recall = accuracy. Since the F1 score is the harmonic mean of both
values, in the particular case that there are only 1-to-1 alignments, we have further:

F1 = 2 · precision · recall
precision+ recall

(3.25)

= 2 · accuracy · accuracy
accuracy+ accuracy

(3.26)

=
2 · accuracy · accuracy

2 · accuracy
(3.27)

= accuracy (3.28)

3.3.2 Statistical significance

To substantiate the effect of any observed metric gains on the data set, statistical
significance tests must be performed. Statistical significance testing is used to ex-
clude the possibility that a system’s victory over another system on a given data set
occurred merely by chance and does not constitute a real improvement in perfor-
mance. For commonly used metrics, there is conventionally a rule-of-thumb stating
how much of a metric gain will constitute a significant result (e.g. 0.4 F1 score im-
provement in parsing and 0.5 BLEU score improvement in machine translation, Berg-
Kirkpatrick et al. [2012]). However, while these rules-of-thumb have been demon-
strated to be reasonable under strict constraints [Berg-Kirkpatrick et al., 2012], it is
generally beer to perform full significance testing against a baseline system to ac-

25

count for other complex factors such as the composition and size of the data set. Ad-
ditionally, since we use a non-standard metric, such rules-of-thumb would not apply
to the experiments we perform.

Hypothesis testing using the bootstrap procedure

Significance testing is performed using the bootstrap method [Efron and Tibshirani,
1993], which provides the advantage of being applicable to any given metric. e
goal of hypothesis testing is to answer the question if, given the output of system A
and system B on a small test set x = x1, ..., xn where system A beats system B by
δ(x), the result will hold on a large population of data. Hence, the goal is to estimate
the likelihood P(δ(X) > δ(x)|H0), in which X is a random variable over possible
test sets, each of the same size as the data set, and H0 is the null hypothesis that
system A is not beer than system B on the whole population. By convention, with
a value of P(δ(X) > δ(x)|H0) < 0.05, the metric improvement δ(x) is considered
significant. A low value of P(δ(X) > δ(x)|H0) indicates that it is unlikely for the
observed metric improvement to occur while system A is not actually beer than
system B. P(δ(X) > δ(x)|H0) is commonly referred to as p-value(x).

e bootstrap procedure estimates p-value(x) by drawing a large number of sam-
ples from the data set x. ese samples are also referred to as bootstrap samples
and are created by randomly sampling with replacement from the data set x. e
procedure is shown in Algorithm 2, where we reproduce the formulation from Berg-
Kirkpatrick et al. [2012].

Algorithm 2 e bootstrap procedure
1 Draw b bootstrap samples x(i) of size n by sampling with replacement from x.
2 Initialize s = 0.
3 For each x(i) increment s if δ(x(i)) > 2δ(x).
4 Estimate p-value(x) ≈ s

b
.

For a large value of b, the bootstrap estimate of p-value(x) will stabilize. Based on the
experiments in Berg-Kirkpatrick et al. [2012], we use b = 106, which is sufficient for
the value to stabilize. For each of the b random samples, the F1 score of system A as
well as system B has to be determined. To make this computation efficient, TP, FP and
FN are precomputed for every sentence in the data set. Sampling is then performed
over the set of sentences together with the precomputed counts for each sentence.
e final F1 score can be computed from the sum of the precomputed counts for each
sentences in the sample.

26

CHAPTER IV

Part-of-Speech Tagging of Noisy Content

For most parsing models, part-of-speech tagging is an important part of the parsing
process. e accuracy of the part-of-speech tagging step has been shown to suffer
significantly from noisy content (e.g. Foster et al. [2011]); hence, we will discuss ap-
proaches to adapting part-of-speech taggers and how these approaches can be com-
bined in this chapter.

4.1 Domain-specific part-of-spee tagging

Gimpel et al. [2011] present a part-of-speech tagger using a coarse part-of-speech
tagset of 25 tags that was specifically designed for and trained on Twier data. e
tagset includes standard part-of-speech tags for nouns, verbs, etc., as well as tags
specifically designed to cover tokens mostly seen in social media services, such as
URLs, email addresses, emoticons, Twier hashtags and mentions of usernames.

e part-of-speech tagger is an implementation of a conditional random field
with local features. e model uses base features that are commonly used in part-of-
speech tagging, such as features for the word type, included digits, suffixes, prefixes,
and capitalization. Additionally, several sets of domain-specific features are used.
Twier-specific orthographic features capture expressions such as hashtags or URLs.
A gazeeer is used to help detect names since names are oen incorrectly capitalized
in user generated content. Additionally, distributional similarity features are includ-
ed to reduce sparseness and the metaphone algorithm is used to produce phonetic
normalizations of the input tokens.

In later versions of the part-of-speech tagger [Owoputi et al., 2013], performance
was improved by the addition of unsupervised word cluster information acquired
via mutual information-based word clustering [Brown et al., 1992]. Word clusters
are produced on large amounts of additional unlabeled data. As the word clustering
algorithm produces hierarchical classes forming a binary tree, the path to each class
can be represented as a bit string in which every bit describes a branching in the tree.
Prefixes of this bit string are a representation of the levels of granularity in the word

27

class hierarchy and are, therefore, used as features in the tagger model. Owoputi
et al. [2013] report that the word class features alone are exceedingly efficient in their
experiments: a tagger trained with only word class features and transition features
already outperforms the tagger presented in Gimpel et al. [2011].

4.2 Combining multiple part-of-spee taggers

As the part-of-speech tagset used by Owoputi et al. [2013] is too coarse to be used
by a dependency parser, we want to be able to combine it with part-of-speech tags
produced by a part-of-speech tagger with a less coarse tagset.

4.2.1 Universal part-of-spee tagset

Petrov et al. [2011] introduce a coarse part-of-speech tagset of 12 universal part-of-
speech categories in order to standardize the part-of-speech tags used in unsupervised
and supervised methods. To encourage its adoption, the authors provide mappings
between this set and the most common part-of-speech tagsets for various languages.
While the tagset itself is too coarse to be used in parsing directly, it is useful for cre-
ating a mapping between coarse-grained and fine-grained part-of-speech tags from
the tagsets used by various part-of-speech taggers.

4.2.2 N-best part-of-spee tagging

To beer combine coarse and fine-grained part-of-speech tags, we determine n-best
part-of-speech tags for each token in the sentence. In a hidden Markov model, the
probability for all tags occurring at a given position can be calculated using forward
and backward probabilities. Using the probability for a tag occurring at a certain
position allows the tags predicted for a token to be compared directly. e probability
of tag t being the correct tag at position i is defined as:

P(ti = t) = αi(t)βi(t)

In this formula, α and β are the forward and backward probabilities that can be ef-
ficiently computed using dynamic programming. αi(t) is the total probability of all
possible tag sequences ending in the tag t at the ith token and βi(t) is the total prob-
ability of all tag sequences starting from t at the ith token and continuing to the end
of the sentence [Jurafsky and Martin, 2000, Prins, 2005, p. 65].

28

4.3 Evaluation

In the experiments we perform, we use a number of combinations of part-of-speech
taggers, which we will briefly describe here.

4.3.1 Implementations

We utilize various part-of-speech tagger implementations: For fine-grained tagging,
we use the Stanford tagger [Toutanova et al., 2003], which is an implementation of
a maximum entropy Markov model, the OpenNLP maximum entropy tagger¹ and an
implementation² of a trigramHMM tagger [Brants, 2000]. For coarse-grained tagging,
we use the domain-specific tagger introduced earlier.

First-best fine-grained tags

In the most basic setup, we use a fine-grained part-of-speech tagger and create coarse
part-of-speech tags by mapping the fine-grained tag to the universal part-of-speech
tagset.

Independent tags: Twitter-specific coarse-grained and general fine-grained tags

In this setup, we use part-of-speech tags from the Stanford part-of-speech tagger as
fine-grained POS tags and a mapping of the Twier specific POS tags from Owoputi
et al. [2013] to the universal tagset as coarse tags.

Twitter-specific coarse-grained and most likely corresponding fine-grained tag

Given the coarse-grained Twier-specific part-of-speech tagger and a fine-grained
general part-of-speech tagger, we aim to jointly tag the text and select the opti-
mal fine-grained part-of-speech tag given the coarse-grained part-of-speech tag. e
top k fine-grained part-of-speech tags are determined, and the highest ranking fine-
grained part-of-speech tag that is mappable via the universal part-of-speech tagset to
the coarse-grained part-of-speech tag of the Twier-specific tagger is selected. e
n-best tag candidates are determined by various methods.

Firstly, in the n-best sequences case, we use the OpenNLP maximum entropy
tagger to determine n-best tag sequences for the full sentence and then transpose the
set of sequences to obtain a ranking for each token.

¹ http://opennlp.apache.org/
² https://github.com/danieldk/jitar

29

http://opennlp.apache.org/
https://github.com/danieldk/jitar

Secondly, in the n-best tags case, we use a HMM-based part-of-speech tagger and
calculate a ranked list of tags for each token using the forward-backward algorithm
introduced above.

Finally, as fast baselines, we determine n-best tags for each individual token. In
this case, which is presented under the label unigram, the part-of-speech tagger con-
siders only the current token for generating an n-best list of tags. is is a fast but
less accurate method since it does not take tag history into account. We use two im-
plementations: e generative implementation uses the emission probability of an
HMM tagger P(wi|ti), i.e. the probability of emiing a word w given the tag t at po-
sition i, for known words and the probability of generating a word suffix si P(si|ti)
in the case of unknown words. e second implementation is a discriminative im-
plementation based on a maximum entropy part-of-speech tagger, which is used to
score the current token without tag history features.

4.3.2 Results and discussion

To provide an overview of the performance of the various part-of-speech tagger im-
plementations on noisy content, we parse the dependency test set of Foster et al.
[2011], as well as our own dependency parsing test set introduced in Chapter 3. We
use a standard MST parser setup. Setups using the Twier-specific tagger in con-
junction with a fine-grained tagger are listed under the label Joint below. Results are
presented in Table 4.1 and Table 4.2.

Method System Unlabeled F1 Labeled F1

First-best

Stanford MEMM 73.65 58.14
OpenNLP ME 72.35 56.47
OpenNLP MEMM 73.72 57.27
HMM 73.65 58.17
Unigram, generative 67.34 51.53
Unigram, discriminative 71.88 54.20

Joint

Stanford MEMM 73.21 57.50
OpenNLP ME (n-best sequences) 72.61 57.23
OpenNLP MEMM (n-best tags) 72.54 56.90
HMM 72.91 57.17
Unigram, generative 71.11 55.30
Unigram, discriminative 72.04 56.20

Table 4.1: Influence of POS tagging on Foster et al. [2011] Twier development set

Table 4.1 and Table 4.2 show a clear difference between the Foster et al. [2011] test
set and our own test set. While in the Foster et al. [2011] test set, the addition of

30

Method System Unlabeled F1 Labeled F1

First-best

Stanford MEMM 68.49 56.77
OpenNLP ME 70.18 58.47
OpenNLP MEMM 68.60 56.47
HMM 69.92 57.60
Unigram, generative 64.19 52.33
Unigram, discriminative 70.18 58.47

Joint

Stanford MEMM 72.18 S 59.11 S
OpenNLP ME (n-best sequences) 72.48 S 60.35 S
OpenNLP MEMM (n-best tags) 72.41 S 60.16 S
HMM 71.39 S 58.39 S
Unigram, generative 69.54 ��S 57.64 ��S
Unigram, discriminative 69.84 ��S 57.07 ��S

Note: S indicates statistical significances at p-value(x) < 0.05, while �S indicates that the
result is not statistically significant.

Table 4.2: Influence of POS tagging on the development section of our test set

the Twier-specific part-of-speech tagger degrades parsing performance in all cases
(see Table 4.1), the addition of this domain-specific tagger to our own development
set improves the parsing performance (see Table 4.2). is result is likely due to the
different make up of both test sets, as was discussed in Chapter 3: Because of the
method of data collection, the Foster et al. [2011] test set contains cleaner data than
our own test set and than the domain for which the Twier-specific part-of-speech
tagger was optimized.

31

CHAPTER V

Text-Normalization in Parsing of Noisy
Content

In this chapter, we assess the influence of text-normalization on dependency parsing
of noisy content. In Section 5.1, we introduce and evaluate unsupervised models for
text-normalization focused on Twier data. Section 5.2 discusses text-normalization
as a machine translation task and relevant corpora are introduced and evaluated. e
treatment of Twier-specific syntax is discussed in Section 5.3. Finally, in Section 6.1,
we provide an overview of the results and perform a detailed error analysis. A dis-
cussion of the results follows in Section 6.2.

5.1 Unsupervised lexical normalization

In order to explore unsupervised approaches to text-normalization, we implement a
state-of-the-art model for unsupervised lexical normalization of text messages such
as Twier posts and apply it to a Twier dependency parsing task.

5.1.1 Automatic lexical normalization

Han and Baldwin [2011] treat what they call the message normalization task in analo-
gy to the spell checking task. However, they stress that it differs in that ill-formedness
in such a seing is oen intentional to a certain degree, for example because there is
a message size limit.

e model proposed in Han and Baldwin [2011] operates on tokens and proceeds
in two steps: if a token is an out-of-vocabulary word (OOV), a classifier is used to
determine if the token is a genuine out-of-vocabulary word (e.g. an unknown name)
or if it is a possible noisy representation of an in-vocabulary word (IV, such as a
misspelling or abbreviation).

In the second step, possible in-vocabulary candidates for the OOV token are pro-
duced and ranked. e set of initial candidates is the set of in-vocabulary tokens
which are within an edit distance of Tc of the OOV token or whose phonetic repre-

32

sentation (using the double metaphone algorithm) is within an edit distance of Tp of
the phonetic representation of the OOV token.

Generating in-vocabulary token candidates

In our implementation, we generate IV token candidates within surface edit distance
Tc and within phonetic edit distance Tp of the OOV token by using a Levenshtein
automaton [Mihov and Schulz, 2004]. We use the Infinite Automata data structure
library,¹ which implements Levensthein automata based on Mitankin [2005]. A Lev-
enshtein automaton is a data structure that can be used to solve the problem of fast
approximate string matching in dictionaries:

Given a paern P , a dictionary D, and a small bound k, efficiently com-
pute the set of all entries W in D such that the Levenshtein distance
between P and W does not exceed k. [Mihov and Schulz, 2004]

A universal deterministic Levenshtein automaton is used in conjunction with a deter-
ministic finite state automaton representing the dictionary to solve this problem. In
our case, the dictionary is the set of in-vocabulary words. Candidate words in the dic-
tionary automaton are determined by searching within the dictionary automaton and
then simultaneously backtracking in both automata. Using this method, it is possible
to retrieve candidate corrections for an OOV token in O

(
n
)
, where n is the length of

the input token [Mihov and Schulz, 2004].

Parameters and features

emaximum surface edit distance Tc and phonetic edit distance Tp are adopted from
Han and Baldwin [2011], where they were empirically set to 2.0 and 1.0 respectively.
All in-vocabulary token candidates are ranked by an unweighted linear combination
of the following features:

− normalized edit distance

− normalized edit distance of the double metaphone representation

− longest common substring

− Is the OOV token a subsequence abbreviation of the IV token (e.g. ppl for peo-
ple)?

− Is the OOV token a possible prefix of the IV token?

¹ http://www.infiauto.com/projects/datastr/

33

http://www.infiauto.com/projects/datastr/

− Is the OOV token a possible suffix of the IV token?

− normalized score from the dependency-based bag of word model

− normalized score from a trigram language model trained on the subset of text
from the target domain containing only IV tokens

e features used in this model measure how close the OOV token is to its possible
IV correction (edit distance, longest common substring) and whether it was creat-
ed through a word formation process (subsequence abbreviation, prefix, suffix). e
dependency-based bag-of-words model and the language model further aempt to
disambiguate the token based on its surrounding context. e language model used
in our experiments was created from a subset of a large collection of tweets, and the
dependency-based bag-of-words model was created from the dependency parse trees
generated by the Stanford parser for the full content of the English Wikipedia².

Examples

Since this model performs normalization only on the level of individual tokens, the
number of tokens in each normalized sentence remains constant. As an illustration
of the output of the model, consider the following first-best normalization examples
of sentences in the Twier development set of Foster et al. [2011]. In the examples
shown in (1), (2) and (3), the original sentence is shown in a. and the proposed cor-
rection is presented in b. Tokens that were classified as misspellings are highlighted.

(1) a. jus ordered my terrell owens jersey
b. just ordered my Terrell owns jersey

(2) a. Successful businesses benchmark themsleves against others .
b. Successful businesses benchmark themselves against others .

(3) a. mabey we ’ll catch watchmen !
b. maybe we ’ll catch watchmen !

5.1.2 Dictionary-based lexical normalization

In Han et al. [2012], the authors further simplify their previous model. While the
model from Han and Baldwin [2011], which was presented above, searches for cor-
rection candidates for each OOV token at runtime, the approach presented in Han

² http://www.let.rug.nl/gosse/Wikipedia/enwiki.html

34

et al. [2012] works by creating a dictionary of OOV tokens and their IV replacement.
e dictionary is applied by replacing each occurrence of an OOV dictionary entry
with its IV correction. e manual collection of such a dictionary would be costly;
hence, it is constructed in a similar fashion as in the previous model.

One apparent shortcoming of this approach is that there is no disambiguation, i.e.
each occurrence of a specific token is always replaced with the same correction. is
can be problematic in ambiguous cases; for example, the OOV token y can both stand
for the IV tokenwhy and the IV token you. e authors present the two example con-
texts yeah, y r right! and AM CONFUSED‼! y you did that? for the two readings. is
issue is addressed by only including OOV tokens longer than a specified minimum
character threshold, which the authors consider being less likely to be ambiguous.

Several individual normalization dictionaries, as well as combinations of individu-
al dictionaries are evaluated. e dictionaries consist of both hand-built dictionaries,
which were compiled manually from sources such as the Urban Dictionary,³ and au-
tomatically generated dictionaries.

e automatically constructed dictionaries are created as follows. For a large cor-
pus of English tweets, each OOV token is considered. e dictionary is then extracted
in two steps:

1. Extract (OOV, IV) candidate pairs based on distributional similarity.

2. Re-rank the extracted pairs by string similarity.

e result of the algorithm is a list of (OOV, IV) pairs ordered by their string similarity.
e best n pairs are then finally included in the normalization lexicon.

e first step exploits the idea that what the authors call lexical variants of a token
will occur in the same contexts as the token itself. erefore, given sufficient data,
such lexical variants should be observed a number of times in distributionally similar
contexts to their standard forms. To measure the distributional similarity, the authors
evaluate various features and finally employ context similarity based on tokens in a
context window of±2 tokens, token bigrams, the position of the token in the sentence
and the Kullback-Leibler divergence as an information theoretic distance measure.

e distributionally similar (lexical variant, standard form) word pairs will, how-
ever, contain a number of false positive correction pairs such as (Mnday, Tuesday),
with the false standard form Tuesday for the misspelling ofMonday, which is a candi-
date due to the close distributional similarity of names of weekdays. For this reason,
the distributionally similar pairs from the first step are in the second step re-ranked

³ http://www.urbandictionary.com/

35

http://www.urbandictionary.com/

by string similarity. Performing this process on an input corpus of appropriate size is
a resource-intensive task; however, once the dictionary is built, it can be used without
the requiring any further computation.

For re-ranking the extracted pairs, a number of string similaritymeasures are eval-
uated based on existing data. e best relative results are achieved using a string sub-
sequence kernel [Lodhi et al., 2002]. For two input strings, a string subsequence ker-
nel provides a measure for the number of common subsequences of a given length (n)
between the two strings. Since the computation of overlapping string subsequences
is expensive, the authors use a small value for the length of each subsequence (n = 2).

Overall, good lexical normalization results are achieved for the combination of a
hand-built dictionary and a dictionary automatically produced using the string sub-
sequence kernel for re-ranking. e addition of a dictionary from previous research
resulted in the three combined dictionaries providing the best performance in the
evaluation.

In the experimentswe perform, wewill only use the final normalization dictionary
that resulted from this research.

5.1.3 Lexical normalization in dependency parsing of Twitter data

To evaluate the impact of text-normalization systems on dependency parsing, we
evaluate an English dependency parser on the dependency test set of Foster et al.
[2011], which is a set of automatically generated and manually corrected phrase-
structure parse trees for Twier data, which was automatically converted to depen-
dency format.⁴

Experiment

For this experiment, we use the MST parser [McDonald et al., 2005] trained on sec-
tions 2–21 of the Penn Treebank. Our only modification is that while the origi-
nal parser implementation uses only the first character of each fine-grained part-of-
speech tag as coarse-grained part-of-speech tags, we use the mapped coarse-grained
universal part-of-speech tagset from Petrov et al. [2011].

Test set Unlabeled F1 Labeled F1
WSJ section 23 91.8 89.2

Table 5.1: Baseline parser performance with gold POS tags

⁴ http://nlp.cs.lth.se/software/treebank_converter/

36

http://nlp.cs.lth.se/software/treebank_converter/

On section 23 of the Penn treebank, the default setup with second-order features and
using gold part-of-speech tags achieves the performance shown in Table 5.1. We use
this parser without any modification on the development set of the Twier data from
Foster et al. [2011]. In the configurations in which we do not use gold tags, we use
the Stanford part-of-speech tagger to provide part-of-speech tags. For the tests with
the dependency test set introduced in Chapter 3, we use the part-of-speech tagger
combinations with the Twier-specific part-of-speech tagger described in Chapter 4.

5.1.4 Results and discussion

In order to determine the impact of lexical normalization on parser performance, we
perform the following experiment. First, we determine the performance of the vanilla
system using predicted tags and gold tags. e results are presented in Table 5.2.

POS tags System Unlabeled F1 Labeled F1
Predicted Vanilla MST parser 73.65 58.14
Gold Vanilla MST parser 80.42 66.34

Table 5.2: Baseline parser performance on the Foster et al. [2011] development set

Next, we determine the performance of lexical normalization seings, which we will
briefly introduce here. In all seings, the tokens of the data set are first normalized
before the parser is applied. However, we test various setups to approximate upper-
bounds of the performance of lexical normalization on the data set. For each token in
the sentence that is corrected by the system, there are usually a number of possible
corrections, ranked by their score for the specific token and context. Beyond only
the best-ranking normalization suggestion, we are interested in how the n-best per-
formance of the normalization system. For example, while the correct normalization
might not be the best-ranked normalization for an OOV token, it might be among the
top-ranked suggestions.

e following setups are evaluated:

− In the first-best normalization setup, we perform first-best lexical normaliza-
tion on the input tokens. is means that for each OOV to be corrected, we
correct it with the best IV token candidate. e normalized resulting sentences
are parsed using the vanilla MST parser model.

− In the first-best by parse score setup, we perform n-best lexical normalization,
then parse all possible combinations of the n-best lexical normalizations for all
tokens and select the parse with the highest parse score.

37

− e first-best by parse and normalization score setup performs n-best lexical
normalization. We then parse all possible combinations of lexical normaliza-
tions and select the parse p̂ with parse score SP and normalization score SN ,
such that p̂ = argmax

p
SP (p) SN(p).

− e oracle n-best setup is used to determine an upper bound for the perfor-
mance of the text-normalization system: for each OOV word classified as ill-
formed, we generate the n-best normalized tokens (n = 10). All possible combi-
nations of normalized tokens in the sentence are produced, tagged and parsed.
When evaluating, we choose the combination of normalizations such that the
parse of the sentence has the highest unlabeled accuracy according to the gold
standard. Since this setup relies on the gold standard tree, this setup is, of
course, not usable outside the evaluation seing. However, it is useful to indi-
cate how the system would perform if it would always make the correct choice
in normalizing a token.

Table 5.4 shows the results of the dependency parsing task aer applying lexical nor-
malization.

POS tags System Unlabeled F1 Labeled F1

Gold First-best by parse score 80.38 66.31
First-best by parse+norm. score 80.38 66.31

Predicted

Vanilla MST parser 73.65 58.14
First-best by parse score 72.74 57.57
First-best by parse+norm. score 72.74 57.57
First-best normalization 72.91 57.57
Dictionary-based normalization 73.55 58.17 ��S

Note: S indicates statistical significances at p-value(x) < 0.05, while �S indicates that the
result is not statistically significant.

Table 5.3: Influence of unsupervised lexical preprocessing on the Foster et al. [2011]
development set

e results show that the first-best normalization, using the Han and Baldwin [2011]
system in either one of its three configurations, degrades the parsing performance
of the vanilla MST parser on this data set. For the dictionary-based normalization,
there is a slight increase in labeled F1 score; however, the increase is not statistically
significant (��S indicates that for this result, p-value(x) ̸< 0.05).

Given these results, we ran an additional experiment to determine the influence
of the detection of ill-formed tokens in the normalization model. For this, the norm-
lization system provides two candidate corrections for each each normalized token:

38

the first-best normalized token and the original token. In the final parse, out of the
original token and the correction, the one token that produces a higher unlabeled ac-
curacy is selected. is simulates the case that the ill-formed word detector is always
correct when asserting a token to be ill-formed.

POS tags System Unlabeled F1 Labeled F1

Predicted Vanilla MST parser 73.65 58.14
First-best normalization 74.01 58.40

Table 5.4: Influence of unsupervised lexical preprocessing on the Foster et al. [2011]
development set given perfect ill-formed word detection

e performance of the oracle n-best setups is shown in Table 5.5. e results for these
setups show that given that the system always selects the best possible normalization
(with different sizes n of the set of best candidates), there would be an improvement
on this data set. Since for the data set introduced in Chapter 3, gold normalizations
are available, we will be able to provide actual upper bounds for the influence of text-
normalization on this data set.

POS tags System Unlabeled F1 Labeled F1

Gold
Oracle n-best (n=2) 80.48 66.37
Oracle n-best (n=5) 80.52 66.44
Oracle n-best (n=10) 80.52 66.44

Predicted
Oracle n-best (n=2) 74.08 58.63
Oracle n-best (n=5) 74.38 58.80
Oracle n-best (n=10) 74.64 58.80

Table 5.5: Oracle normalization parser performance on the Foster et al. [2011] devel-
opment set

Overall, perfect ill-formed word detection and improved candidate selection in the
Han and Baldwin [2011] model could increase the parsing performance on the Foster
et al. [2011] test set; however, the default non-oracle seings for the text-normalization
system degrade the parsing performance. is result is similar to the results for part-
of-speech tagging we have presented in the previous chapter. Hence, we will next
turn to the effect on our own test set.

Table 5.6 presents the results for unsupervised lexical normalization on the de-
velopment section of the test set introduced previously. Results are shown for two
standard part-of-speech taggers (the Stanford and the OpenNLP ME taggers) and the
combination of a maximum entropy Markov model for fine-grained tagging and the
coarse-grained domain-specific part-of-speech tagger.

39

POS tags System Unlabeled F1 Labeled F1

Stanford ME
Vanilla MST parser 68.49 56.77
First-best normalization 68.53 ��S 56.85 ��S
Dictionary-based normalization 70.11 S 58.28 S

OpenNLP ME
Vanilla MST parser 70.18 58.47
First-best normalization 69.81 58.05
Dictionary-based normalization 70.82 S 59.26 S

coarse+n-best tags
Vanilla MST parser 72.41 60.16
First-best normalization 71.95 59.71
Dictionary-based normalization 72.71 S 60.61 S

Note: S indicates statistical significances at p-value(x) < 0.05, while �S indicates that the
result is not statistically significant.

Table 5.6: Influence of unsupervised lexical preprocessing on the development section
of our test set

Only in the case of the Stanford part-of-speech tagger, an improvement for the Han
and Baldwin [2011] normalization system can be observed; however, on this data
set, the improvement is not statistically significant. e dictionary-based approach
from Han et al. [2012], however, shows statistically significant improvements in both
unlabeled and labeled F1 score, and in combination with all part-of-speech tagger
setups. A detailed discussion of these results will follow in Section 6.2.

5.2 Text-normalization as maine translation

In this section, we will motivate the idea of using a statistical machine translation
system as a preprocessing step for text-normalization and will briefly introduce the
basics of statistical machine translation based on phrase-based models as well as dis-
cuss corpora relevant to the problem.

5.2.1 Statistical maine translation using phrase-based models

Research in machine translation has a long history spanning over 60 years, and var-
ious approaches as well as a variety of levels of encoded linguistic knowledge have
been utilized. In recent years, phrase-based systems have provided good results for
many languages.

e main idea behind phrase-based models for statistical machine translation is
that not words or syntactic structures but phrases form the basic units for translation.
A phrase in this sense is any sequence of tokens of a particular length; hence, the

40

notion of a phrase in this context is not necessarily linguistically motivated.
A phrase-based machine translation system translates a sentence from a foreign

language (e.g. French) into a second language (e.g. English) by first segmenting the
French sentence into phrases, translating the phrases individually into English and re-
ordering them according to the target language. For the translation of the individual
phrases, a translation table is needed, which can be acquired from parallel data in
various ways.

Acquiring the translation table

e first step for most algorithms is the acquisition of word alignments. Word align-
ments are the automatically determined alignments between the words of the sen-
tence and its translation. In the word alignments, words from one language may be
aligned to one, many or no word in the target language.

e most widely used word alignment algorithms are based on the IBM Models,
which are generative models for word-based translation. e most basic IBM Model,
IBM Model 1, defines the translation probability of a foreign sentence to a target-
language sentence as follows (we use the formulation from [Koehn, 2010, p. 86]). Let
f = (f1, ..., flf) be a foreign sentence of length lf , let e = (e1, ..., ele) be a target-
language sentence of length le and let a : j → i be an alignment function mapping
each target-language word ej to a foreign word fi. en, the probability of translating
a foreign sentence f to a target-language sentence e (in machine translation literature,
the target-language is oen assumed to be English, hence e) is:

p(e, a|f) = ϵ

(lf + 1)le

le∏
j=1

t(ej|fa(j)) (5.1)

In this model, ϵ
(lf+1)le

is used for normalization. ere are lf words and one NULL
token in the foreign sentence (lf + 1), which can be aligned to any of the le words
in the target-language sentence (hence (lf + 1)le). ϵ is a normalization constant. e
important part of the formula is the product over the individual lexical translation
probabilities for the generated words in the target-language.

To learn the translation probabilities t(ej|fa(j)), a version of the Expectation Max-
imization (EM) algorithm is applied to sentence-aligned parallel text. While it would
bemore straight-forward to learn these probability distributions frommanuallyword-
aligned sentences, the availability of such corpora would be an unrealistic require-
ment and sentence-aligned parallel texts can be acquired more easily than word-
aligned corpora, for example from the parallel proceedings of the European parlia-

41

ment.⁵
e EM algorithm is executed with initial probability distributions, which it re-

fines iteratively using the following steps:

1. Initialize the model, for example with uniform or random distributions

2. Expectation step: Apply the model to the data

3. Maximization step: Re-estimate the model from the data

4. Repeat from 2 until convergence

In the case of word alignments, uniformly initialized probability distributions mean
that every foreign word may be translated with any target-language word with equal
probability. e expectation and maximization step are repeated until the model con-
verges. It has been shown that in some restricted cases, such as the IBMmodel 1, con-
vergence to a global minimum is guaranteed. Higher IBM models offer refinements
on the basic model presented above but also increase the complexity. IBM model 2
adds absolute alignment, IBM model 3 adds a fertility model, IBM model 4 adds a
relative alignment model and IBM model 5 corrects deficiencies in the lower-level
models. More details on the implementation of the EM algorithm in the case of the
IBM models can be found in e.g. [Koehn, 2010, p. 89]). Word alignment based on IBM
models 1–5, as well as an HMM-based word-alignment model are implemented in the
widely-used GIZA++ toolkit [Och and Ney, 2003], which is also used by the Moses
system [Koehn et al., 2007].

From word alignments to phrase alignments

Aer word alignments are extracted for the aligned parallel sentences, the goal is
to find phrases that are consistent with the word alignments. Algorithms for phrase
extraction use the alignmentmatrix as input and aim to find the optimal phrases given
the constraints of the word alignment and additional considerations, such as that a
target-language phrase that does not contain aligned words should not be matched
against the foreign sentence.

e phrase-based model

e phrase-based model for statistical machine translation is defined as follows. We
use the formulation from [Koehn, 2010, p. 129]. e best target-language translation

⁵ http://www.statmt.org/europarl/

42

http://www.statmt.org/europarl/

ebest for a foreign sentence f is

ebest = argmax
e

p(e|f) (5.2)

and aer applying Bayes’ rule:

ebest = argmax
e

p(f|e)pLM(e) (5.3)

In this model, p(f|e) is decomposed into:

p(f I
1 |eI1) =

I∏
i=1

ϕ(fi|ei)d(starti − endi−1 − 1) (5.4)

Using this decomposition, the foreign sentence f is modeled as consisting of I phrases
fi. ϕ(fi|ei) is the translation probability of translating a target-language phrase ei to
a foreign phrase fi.

e reordering model d(starti− endi−1−1) is a simple distance-based reordering
model. e reordering distance starti − endi−1 − 1 is the number of skipped words
between the translation of the ith target-language phrase and the translation of the
i− 1th target-language phrase. Instead of estimating the probabilities for reordering
from data, phrase-based MT systems oen use an exponential decaying cost function
for d. In this case, d is defined as d(x) = α|x|, where α is an appropriately estimated
parameter between 0 and 1. is formulation of the reordering model penalizes the
movement of phrases over long distances and favors short or zero movements.

Extensions of the basic model

e presented model for phrase-based machine translation is the most basic model,
which is further refined in most cases. One common refinement, which is, for ex-
ample, used in the Moses toolkit, is the usage of log-linear models. e basic model
assumes that the translation model, the language model and the reordering model
all contribute equally to the probability of the final best translation. However, in
many cases this assumption is not sufficient, for example, since the data used for the
language model may be less reliable than the translation model data. In order to in-
troduce weights into the model, the model can be formulated as a log-linear model,

43

which is defined as follows.

p(x) = exp
n∑

i=1

λihi(x) (5.5)

hi is a feature function that is given the full random variable x as input. n is the
number of total feature functions used in the log-linear model. Every feature function
hi is weighted by a corresponding weight λi. In the basic case, there are 3 feature
functions:

• the translation model logϕ,

• the language model log pLM,

• and the reordering model log d.

Apart from the assignment of weights to its individual components, this model also
enables the simple addition of further scores.

Additional common refinements to themodel are the usage of bi-directional trans-
lation probabilities, word and phrase penalties, discriminative training and extended
reordering models. Further, we do not discuss decoding here, which is the essential
task of finding the best-scoring translation hypotheses according to the model in a
tractable manner.

5.2.2 Corpora

As discussed in the previous section, a phrase-based statistical machine translation
system requires sentence-aligned parallel texts to estimate the translation model, as
well as monolingual text in the target-language to estimate the language model.

In this thesis, we focus on noisy content from the Twier domain. For this do-
main, no useable parallel data of reasonable size exists. ere are, however, parallel
texts for the text messages domain. ese corpora consist of text messages and their
normalized equivalents. Such corpora exist since there has been a growing interest
in the automated processing of text messages, for example for supporting the work
of emergency responders in natural disasters such as earth quakes. While this is a
different domain from the domain we focus on, the restrictions on both domains are
similar. Similarly to the domain we focus on, text messages are restricted to a fixed
number of characters, hence inviting users of the medium to abbreviate words in or-
der to maximize the content of the message. Additionally, as with the Twier domain,
there is oen lile focus on correct spelling and messages are oen composed in a

44

very limited amount of time. erefore, these data sets should be applicable for our
purposes. We will briefly introduce the relevant corpora in this section.

Parallel text message corpora

Aw et al. [2006] explore phrase-based statistical machine translation as a preprocess-
ing step to a machine translation task involving text messages. As part of their effort,
they manually normalize a subset of 5.000 messages from a larger corpus of text mes-
sages.

Raghunathan and Krawczyk [2009] explore the usage of standard toolkits for ma-
chine translation to perform a similar text-normalization task and extend the corpus
created by Aw et al. [2006] by around 2.500 normalized text messages.

Both corpora were not directly created for social media services such as Twier,
which is the source of our data set, however the restrictions of both domains are
similar and hence the assumption that we can use both corpora for our purpose is
reasonable. Table 5.7 provides an overview of relevant corpus statistics for both the
Aw et al. [2006] corpus and the training, development (D) and test (T) sections of the
Raghunathan and Krawczyk [2009] corpus. e out-of-vocabulary rate for tokens and
types is calculated against the English dictionary of the GNU Aspell spell checker.⁶

Sentence length Token length OOV rate
Corpus # sent. Mean Med. Std Mean Med. Std Tokens Types
Aw EN 5000 13.90 12 8.60 3.45 3 1.99 0.327 0.405
Aw SMS 5000 13.73 11 8.51 3.18 3 1.90 0.392 0.500

R&K EN 1930 14.57 13 9.42 3.44 3 1.90 0.230 0.235
R&K SMS 1930 14.26 12 9.18 3.13 3 1.85 0.315 0.327

R&K EN D 540 15.84 13 10.13 3.39 3 1.85 0.239 0.197
R&K SMS D 540 15.44 13 9.77 3.06 3 1.80 0.321 0.308

R&K EN T 477 17.06 15 10.60 3.43 3 1.86 0.246 0.226
R&K SMS T 477 16.52 14 10.13 3.11 3 1.77 0.346 0.353

Table 5.7: Corpus statistics for parallel text message corpora

5.2.3 Methodology

As in the previous section, we perform a simple evaluation of machine translation as
a preprocessing step for parsing by applying it to a dependency parsing task.

⁶ http://aspell.net/

45

http://aspell.net/

System setup

Based on the noisy parallel texts and following the Moses baseline tutorial,⁷ we cre-
ate a Moses system [Koehn et al., 2007]. e training corpus is formed by concate-
nating the parallel texts from Aw et al. [2006] and the training section from Raghu-
nathan and Krawczyk [2009]. Word alignments are automatically determined via the
GIZA++ toolkit. e grow-diag-final heuristic is used to establish the final word
alignments based on the two word alignments produced by GIZA++ (the two sets of
word alignments are the two directions original→ normalized and normalized
→ original). A language model is built using the IRSTLM toolkit⁸ on the English
side of the news-commentary data set used in the baseline setup.

e weights λ for the log-linear model used in Moses are automatically estimated
on heldout data using the Minimum Error Rate Training (MERT) algorithm [Och,
2003]. Tuning is performed on the development section of the Raghunathan and
Krawczyk [2009] corpus.

Baseline performance

Table 5.8 presents the performance of the machine translation system on the devel-
opment section of our data set and on the test section of the text message data that
was used for training this system. Table 5.8a shows the performance scores for the
normalization of the development section of our data set and Table 5.8b shows the
results for the test section of the Raghunathan and Krawczyk [2009] data. In both
tables, ↑ and ↓ indicate whether a higher score (↑) or a lower score (↓) constitute
an improvement. In the two columns Raw and Normalized, we show the results of
translation quality metrics between the original, raw tokens and their gold normal-
ization (Raw) and the automatically normalized raw tokens and the gold normaliza-
tion (Normalized). Results are shown using the BLEU metric [Papineni et al., 2002],
which is based on overlapping n-grams, and the translation edit rate [Snover et al.,
2006], which models the number of edits required to correct the output of a system.
Finally, the length of the translation hypotheses as a ratio to the length of the gold
normalization is displayed in the table row Length.

Due to slightly differing annotation conventions between the data sets, we per-
form a minimal correction before the evaluation: For the evaluation of translation
quality, we use two reference translations, first the gold standard translation and sec-
ond the gold standard translation with common contractions expanded to their full

⁷ http://www.statmt.org/moses/?n=Moses.Baseline
⁸ http://hlt.fbk.eu/en/irstlm

46

http://www.statmt.org/moses/?n=Moses.Baseline
http://hlt.fbk.eu/en/irstlm

word forms.⁹ is expansion is necessary because in the Raghunathan and Krawczyk
[2009] training set, contractions are consistently normalized to their full word forms
and hence the MT system replicates this behavior. By using both versions as refer-
ence translations, we qualify both the contracted versions and the full versions as
acceptable in the evaluation. All scores are for fully lowercased, tokenized references
and translation hypotheses.

Metric Raw Normalized

BLEU ↑ 85.0 87.0 S
TER ↓ 7.8 6.1 S
Length 97.9 98.9

(a) Development section of our data set

Metric Raw Normalized

BLEU ↑ 50.9 84.4 S
TER ↓ 25.2 7.6 S
Length 96.9 99.3

(b) Raghunathan and Krawczyk [2009] test
section

Note: S indicates statistical significances at p-value(x) < 0.05, while �S indicates that the
result is not statistically significant.

Table 5.8: Metrics for MT output quality for the normalization of two test data sets

From these baseline results, it is apparent that the normalization is both more urgent
and more effective on the Raghunathan and Krawczyk [2009] test section specifical-
ly targeted to text message normalization. e BLEU score of the non-normalized
text of 50.9 on the text message data set compared to the BLEU score of 85.0 on our
Twier data set shows that this data set requires significantly more normalization.
Our data set was collected as a representative sample, and not as a data set contain-
ing exclusively noisy data. Nevertheless, the normalization using the Moses baseline
system improves the BLEU score on our data set, albeit by a smaller margin than on
the text message data. e improvement in both cases is also visible in the length
of the automatically normalized sentences, which are closer to the length of the gold
normalization in both cases.

5.2.4 Results and discussion

Having introduced and evaluated the Moses baseline translation system, we will in-
vestigate the effectiveness of the translation system as a preprocessing step to reduce
noise in a dependency parsing task. As previously, we perform a simple parsing task
on noisy content with different setups of a dependency parser. In this part, we are
only interested in the influence of the machine translation system and will hence only

⁹ Specifically, we perform the following replacements: ’ll→ will, ’ve→ have, ’m→ am, n’t → not, ca
→ can, ’re→ are

47

compare three setups: as a baseline, we use the MST parser with no normalization.
e second setup is the system, where normalization is performed using the Moses
setup as a preprocessing step before the parsing task and the third system is a system,
where we use the manually normalized tokens from our development set as gold nor-
malization. All parser setups use the Twier-specific part-of-speech tagger for coarse
tagging and n-best part-of-speech tags from a maximum entropy Markov model for
fine-grained tagging. Table 5.9 shows the results for each setup in terms of unlabeled
and labeled F1 score, as introduced in Section 3.3.

POS tags Data set Normalization Unlabeled F1 Labeled F1

coarse+n-best tags

Dev.
Vanilla 72.41 60.16
Moses 73.25 ��S 61.26 S
Gold 77.30 S 65.82 S

Full
Vanilla 71.35 59.32
Moses 72.25 S 60.38 S
Gold 76.36 S 64.96 S

Foster dev. Vanilla 72.55 56.90
Moses 72.27 56.50

Note: S indicates statistical significances at p-value(x) < 0.05, while �S indicates that the
result is not statistically significant.

Table 5.9: Influence of MT-based preprocessing on three data sets

It can be observed that the application of the Moses system as a preprocessing step
improves the unlabeled F1 score of our dependency parsing task from 72.41 to 73.25

on the development section and from 71.35 to 72.25. Hence, as such, a preprocessing
step based on machine translation does improve parsing quality.

On the development section of our data set, the difference between the vanilla
system and the system using Moses normalization is not statistically significant (for
p-value(x)< 0.05). However, since the significance of the result is influenced by a
number of factors, including the size of the data set, we also performed the same
evaluation on the combined development and test sections of our data set (Full in
Table 5.9). On the full data set, the improvement is significant (p-value(x)= 0.018).

On the development set of Foster et al. [2011], the normalization degrades the
vanilla parsing performance. is is a similar result to the unsupervised methods;
however, the this decrease is not as strong as the decrease we have observed there.

An equally interesting result, however, is that the upper bound of the normalization-
based improvement, which would assume that a normalization step produces perfect
output, is as high as an F1 score of 77.30. In the next sections, we will perform a de-

48

tailed error analysis to investigate this observation. Additionally, the normalization
in this experiment was applied directly to the full original data, including Twier-
specific syntax and hence we will evaluate the same setup with a separate treatment
of Twier-specific syntax in the next section.

5.3 Twitter-specific preprocessing

In most cases, methods for domain adaptation aim to be generalizable to any num-
ber of domains. However, there are also cases in which it is practical to focus on
one particular domain. e Twier-specific part-of-speech tagger introduced in Sec-
tion 4.1, for example, exhibits a number of properties that apply mainly to its single
target-domain, such as specialized part-of-speech tags for Twier-specific syntax like
hashtags. Similarly, we integrate domain-specific treatment of Twier syntax in our
experiments.

In Section 3.2.2, the treatment of Twier-specific syntax in the dependency anno-
tations for our test set were outlined. In this section, wewill discuss the target-domain
specific handling of syntax particular to Twier as part of parsing.

We treat Twier-specific syntax using the following deterministic procedure:

1. Remove Twier-specific tokens from the beginning of the sentence and push
them on a stack.

2. Remove Twier-specific tokens from the end of the sentence and push them on
a stack.

3. Parse the remaining sentence using the underlying dependency parser.

4. Re-aach the tokens from (1) and (2) to the resulting dependency tree in accor-
dance to the annotation guidelines set out in Section 3.2.2.

Twier-specific tokens occurring at the beginning of a sentence are discourse mark-
ers, such as RT and MT and user names. Tokens occurring at the end of a sentence
are hash tags, URLs and user names.

Table 5.10 shows the influence of the deterministic treatment of Twier-specific
syntax on our dependency test set, as well as on the data set from Foster et al. [2011].
As in previous experiments, the MST parser is used. In this case, the part-of-speech
tags are provided by the OpenNLP maximum entropy part-of-speech tagger.

Treating Twier-specific syntax in the same fashion as it is annotated in our data
set leads to a statistically significant improvement in F1 score over the vanilla system.
is result is not surprising since it merely means that the Twier-specific tokens

49

POS tags data set System Unlabeled F1 Labeled F1

coarse+n-best tags Dev. Vanilla 72.41 60.16
Twier-specific 76.17 S 64.38 S

Stanford first-best Foster dev. Vanilla 73.65 58.14
Twier-specific 75.52 S 60.11 S

Note: S indicates statistical significances at p-value(x) < 0.05, while �S indicates that the
result is not statistically significant.

Table 5.10: Influence of deterministic handling of Twier-specific syntax

that can be unambiguously annotated are annotated automatically in the same way
as they are annotated manually in the test data. e same significant improvement
can, however, also be observed on the development section of the independent Twier
data set of Foster et al. [2011].

50

CHAPTER VI

Discussion and Conclusion

In this chapter, we will summarize and discuss the overall results, analyze the errors
produced by one system setup on the development section of our data set and discuss
possible improvements.

6.1 Evaluation

In the previous sections, we have discussed various methods of preprocessing and
part-of-speech tagging of noisy content and have evaluated these methods individu-
ally. In this section, we will combine and summarize these methods and perform an
error analysis on one of the best-performing combinations.

6.1.1 Summary

e deterministic preprocessing described in Section 5.3 can straightforwardly be
combined with other normalization methods. In Table 6.1 we present the results of
such combinations. A first division in the table is whether Twier-specific prepro-
cessing was performed (Twier-specific) or not (Vanilla). e table is further subdi-
vided by the method used for normalization and the type of part-of-speech tagger
being used. In the case of gold normalization, we directly parse the gold side of our
development set. Gold part-of-speech tags are only applicable to the case of gold text-
normalization since in other cases the tokens being parsed may not entirely match
the part-of-speech gold standard provided by the gold side of the development data
set.

e results shown in Table 6.1 allow several observations: While evaluating the
performance of MT-based normalization in Section 5.2.4, the difference between MT-
based normalization and gold normalization could be observed as rather large (for the
case of coarse+n-best tags, F1 score of 73.25 compared to 77.30). As Table 6.1 shows,
aer Twier-specific preprocessing was performed the difference between MT-based
and gold normalization is much smaller (F1 score of 76.85 compared to 78.24).

A second observation is that in all cases, even in the case that Twier-specific

51

System Norm. POS tags Unlab. F1 Labeled F1

Vanilla -
Coarse+n-best tags 72.41 60.16
Coarse+n-best seq. 72.48 60.35
Fine 70.18 58.47

Twier-specific

Gold

Gold 79.28 69.85
Coarse+n-best tags 78.24 67.54
Coarse+n-best seq. 78.20 68.02
Fine 77.87 67.35

Moses
Coarse+n-best tags 76.85 65.38
Coarse+n-best seq. 77.04 65.64
Fine 75.46 64.52

Norm. dict.
Coarse+n-best tags 76.36 64.80
Coarse+n-best seq. 76.55 65.17
Fine 74.25 63.63

Moses+dict.
Coarse+n-best tags 77.08 65.57
Coarse+n-best seq. 77.08 65.68
Fine 75.58 64.74

-
Coarse+n-best tags 76.17 64.38
Coarse+n-best seq. 75.98 64.53
Fine 73.31 62.61

Table 6.1: Summary of parser performance on the development section of our test set

syntax is handled by preprocessing, combining the coarse-grained part-of-speech tags
provided by a Twier-specific part-of-speech tagger with fine-grained part-of-speech
tags provided by a second part-of-speech tagger improves parsing performance by a
statistically significant margin.

Finally, there is a minor additional improvement in unlabeled and labeled F1 score
for combining the MT-based normalization with the dictionary-based normalization.
However, this difference is not statistically significant.

6.1.2 Error analysis

We perform an error analysis on a selected setup from the last section. is setup uses
both Twier-specific normalization and MT-based normalization, as well as coarse-
grained Twier-specific part-of-speech tagging combined with n-best part-of-speech
tags provided by a maximum entropy Markov model.

In order to give an overview of themost common types of errors and their sources,
50 incorrect dependency relations were randomly selected from the development set,
whichwas parsed using the setup introduced above. ese dependency relationswere

52

then manually categorized by the type of error that lead to the relation deviating from
the gold standard. Table 6.2 shows the resultingmanually judged error types arranged
into categories and ordered by their frequency within each category.

Category Error type Frequency

Domain-specific errors
General errors 7
Aachment of emoticons 4
Missing copula 3

Mis-aachment

Aachment of punctuation 6
Aachment of object 2
Aachment of subject 1
Aachment of adverb 1
PP-aachment 1

Normalization

Unnecessary normalization 2
Token not split correctly 2
Mis-normalization 1
Mis-insertion 1

General
Other errors and inconsistency
between training and test data 14
Proper noun compounds 1

Table 6.2: Error analysis on the development section of our test set

We found four broad categories of errors with several specific error types in each
category. e single most frequent error type is “Other errors and inconsistencies
between training and test data” followed by the category of errors related to the
domain-specific properties of the data set. In the following, the four categories of
error sources are defined and illustrated with examples.

Domain-specific errors

Frequent errors in this category are due to dependency relations that are mis-aached
because the copula that should be annotated as the root of the dependency tree is
missing.

....ROOT ..You ..the ..lil ..guy ..haha.....

Figure 6.1: Predicted dependency tree missing are

53

In these cases, the normalization failed to insert this token. Figure 6.1 shows the
dependency tree predicted for the input tokens U da lil guy haha. Since in the gold
standard, we assume that a token for are was inserted and in this case the dependency
parser identified guy as the root and aached all other tokens to it, there are three
resulting incorrect dependencies in the tree (guy→ haha, guy→ You and ROOT→
guy).

A second frequent source of error in the data set is the treatment of emoticons. In
annotating the data set, we reached the decision to treat emoticons like other unclas-
sified uerances such as haha and aach them to the root node. As emoticons are
not a part of the WSJ training data, the dependency parser treats them as punctua-
tion and aaches them according to the CoNLL conventions for punctuation present
in the training data.

Other domain-specific errors (General errors in Table 6.2) are mostly due to cor-
rectly spelled but domain-specific vocabulary.

Mis-attaments

e category of mis-aachments contains general cases where a specific type of token
is not aached to the correct head. ese mis-aachments contain linguistically less
relevant categories like punctuation, but also the aachment of the object and subject
to the correct verb head, the aachment of adverbs and the aachment of preposi-
tional phrases. Unlike the errors discussed in the last category, the errors based on
mis-aachment are not very specific to the domain of the data and could be solved
by more accurate parsing algorithms.

Normalization-related errors

As normalization-related errors, we treat any instance of an error that is due directly
to the preprocessingwe performed. An unnecessary normalization is the case that the
normalization step replaced a correct token with an incorrect proposed correction.

e error type token not split correctly refers to the case that a token in the input
data should be split into two or more tokens according to the gold standard but was
not split by the preprocessing step. For example, the token ur would in a certain
context refer to you are and should accordingly be split into these two tokens.

Mis-normalization refers to the case that a token that was indeed incorrect was
normalized to an incorrect proposed correction.

Finally, the normalization step can also lead to incorrect insertions, which in turn
can cause incorrect dependencies that are not part of the gold standard.

54

General errors

In the category of general errors, we count reasons for incorrect dependencies that are
neither specific to the domain nor caused by any normalization or specific linguistic
phenomenon, such as errors in the dependencies of parts of compound proper nouns.

e largest number of errors we observed for a single error type were miscella-
neous errors and inconsistencies between training and test data. As belonging to this
type, we count, for example, cases in which from multiple verbs in a sentence, a dif-
ferent verb than the gold standard root is chosen as the root. is error type contains
both cases, were this is due to an inconsistency between the training and our test set
annotation and where it is a genuine mistake by the parser.

6.1.3 Possible improvements

e error analysis performed shows that while the normalization appears to work
reliably, domain-specific issues remain. Both emoticons and errors due to missing
copula form a significant part of the domain-specific errors and could be addressed
separately.

General errors not related to the domain or the normalization are either due to
genuine ambiguities in the category mis-aachments or due to inconsistencies be-
tween the training set and the test set. While the domain-specific and normalization-
related errors can be addressed by improving the normalization, the errors in the
general and mis-aachment category would also occur on other data sets and could
be improved by a beer underlying parser model.

6.2 Discussion

e experiments in Section 5.1, Section 5.2, and Section 5.3 examined normaliza-
tion based on machine translation as well as deterministic preprocessing of Twier-
specific syntax. e findings from these experiments have shown that thse nor-
malization techniques can improve parsing performance on a data set for depen-
dency parsing that is focused on user-generated, noisy content. In Section 5.1, we
observed mixed results for unsupervised methods. e results were mixed in the
sense that while the purely unsupervised method did not improve performance; the
dictionary-based method, which additionally includes manually selected data, did in-
deed show improvements. e error analysis presented in the previous section has
further shown that while a large proportion of the remaining errors are genuine pars-
ing errors, domain-specific errors still remain.

55

Performance of unsupervised and semi-supervised models

In the experiments, we have observed that the semi-supervised model, which per-
forms text-normalization using a machine translation system, has improved the pars-
ing accuracy on our noisy data set, and slightly degraded the performance on the
cleaner data set from Foster et al. [2011]. e unsupervised models, when applied
without manually added data, did not improve the performance. On the other hand,
the dictionary-based normalization, which contains manually added data, improved
the performance. However, this improvement still remains smaller than the improve-
ment obtained from the MT-based normalization system.

At a first glance, this observation seems to be inconsistent with previous evalua-
tions, such as the evaluations performed in the original publications of Han and Bald-
win [2011] and Han et al. [2012], in which the unsupervised models have been shown
to perform beer than models based on statistical machine translation. However,
there are several reasons why these observations are compatible with our results:

Firstly, previous evaluations of unsupervised text-normalization methods work
only on the token level. is means that even though the models are able to correct
single tokens; they are actually unable to split or delete them, or insert new tokens.
Returning to a previous example, the token ur, which could mean both your and you
are depending on the context, is represented in the Han et al. [2012] normalization
dictionary by the entry your. In this case, the restriction of the model to single tokens
would not allow ur to be expanded to you are. It could be argued that instead of a
part of a normalization component, the normalization of single tokens into multiple
tokens should be a part of the tokenization component. However, since there are cas-
es where syntactic disambiguation is necessary, this would merely move the problem
to another component, and not provide a useful solution to the normalization prob-
lem. Additionally, since insertions and deletions should be possible, this task is beer
handled in the normalization step. Text-normalization using a machine translation
system does not require the restriction to single tokens since in statistical machine
translation, each source-language token can be translated to a NULL token, a single
token or multiple tokens in the target language.

e second reason why these observations do not necessarily contradict our re-
sults is because the overall results depend heavily on the make up of the test set and
the test methodology. On the Foster et al. [2011] data set, for example, the methods
result in only negligible changes. e goal for our data set was to make it as rep-
resentative as possible for the average language use in Twier. erefore, it is still
less noisy than test sets, which are more focused on noise. erefore, the unsuper-

56

vised model might still perform beer on those test sets consisting of even noisier
data. Overall, however, it is also encouraging to observe that combining the MT-
based normalization with the unsupervised normalization can still improve on the
results of both further, even if this difference is not statistically significant.

Alternatives

Performing preprocessing of a parsed text is only one possible means of parser adap-
tation. For instance, it has been shown that methods such as self-training, i.e. re-
training a parser on the in-domain output of a more exact but slower generative
phrase structure parser, can provide significant improvements with exceedingly large
data sets. However, one advantage of preprocessing as parser adaptation is that it
is agnostic to the underlying parser, which offers several benefits. Firstly, it can
straightforwardly be directly with other means of adaptation such as self-training.
Secondly, in the basic case, existing parsing models can be utilized directly without
any modification and, hence, it is straightforward to exchange the underlying parser.

Outlook and future work

In domain adaptation, and natural language processing in general, a common prob-
lem is the scarcity of relevant annotated data sets. It is generally assumed that while
unannotated text for a domain is relatively unproblematic to obtain; annotated data
sets are usually scarce. Self-training is, therefore, a valuable domain adaptation strat-
egy as it only requires unannotated in-domain data (along with a strong generative
parser). Normalization based on MT techniques, however, requires parallel texts,
which are easier to acquire than syntactically annotated data, but they still pose a
minor obstacle.

In our case, we were able to utilize existing data sets for a related task, but for
other languages, such data sets might not be available. For these reasons, we also
evaluated unsupervised methods for text-normalization in Section 5.1. In our experi-
ments, thesemethods did not provide the same improvement as theMT-basedmethod
we explored, and thus more investigation into this issue may improve this situation.

57

6.3 Conclusion

In this thesis, we have compared various strategies for adaptation to noise in depen-
dency parsing. e central question of interest was whether a text-normalization step
based on MT techniques and whether a text-normalization step using unsupervised
methods can be applied efficiently to the parsing task.

In order to examine this issue, a test data set containing noisy content fromTwier
was collected and annotated, and an evaluation metric was defined. e data set
was created with the goal that it had to be representative both in terms of language
use and in terms of the general level of noise within this domain. Since we were
interested in working directly with the noisy version of the data, the data set was
designed to include both the original data and the normalized version of the text that
was annotated with dependency syntax. We hope that beyond this work, this data
set will be of utility to related research areas, such as research into human sentence
comprehension.

Using this data set, we have shown that text-normalization as a preprocessing
step in dependency parsing can lead to significant improvement of parsing accuracy
over a baseline system. e experiments demonstrated that text-normalization based
on standard machine translation tools, and combined with deterministic treatment of
selected domain-specific syntax, provides good results. e machine translation sys-
tem is trained on parallel texts created for a text message normalization task, which is
not strictly the same as our target domain but is a related seing since the restrictions
of both domains are similar. Further, we have shown how a domain-specific and a
general part-of-speech tagger can be combined for this task.

For someone uninitiated in the inner workings of modern parsing algorithms, a
natural language parser’s difficulty with even small errors in its input data might be
difficult to comprehend. Aer all, when we, as human beings, read a text contain-
ing minor errors, we do not have any difficulty ignoring these errors and understand
the intended message regardless. e noisy-channel model, which is the basis for
both the MT-based methods and the unsupervised methods for text-normalization
we explored, has been used extensively for modeling sources of distortion in vari-
ous natural language processing tasks. Applying this model to the parsing task by
performing preprocessing of the input text, we observed an improvement in parsing
accuracy. While this is only a small step towards making parsing as robust to noise
as human sentence comprehension, we still consider this as an interesting result.

58

Bibliography

AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. A phrase-based statistical model for
SMS text normalization. In Proceedings of the COLING/ACL on Main conference
poster sessions, pages 33–40. Association for Computational Linguistics, 2006.

Taylor Berg-Kirkpatrick, David Burke, and Dan Klein. An empirical investigation of
statistical significance in NLP. In Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language
Learning., pages 995–1005. Association for Computational Linguistics, 2012.

Adam Bermingham and Alan F. Smeaton. Classifying sentiment in microblogs: is
brevity an advantage? In Proceedings of the 19th ACM International Conference on
Information and Knowledge Management., pages 1833–1836. ACM, 2010.

orsten Brants. TnT: a statistical part-of-speech tagger. In Proceedings of the
Sixth Conference on Applied Natural Language Processing, ANLC ’00, pages 224–
231, Stroudsburg, PA, USA, 2000. Association for Computational Linguistics.

Peter F. Brown, Peter V. Desouza, Robert L. Mercer, Vincent J. Della Pietra, and
Jenifer C. Lai. Class-based n-gram models of natural language. Computational
Linguistics, 18(4):467–479, 1992.

Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multilingual dependency
parsing. In Proceedings of the Tenth Conference on Computational Natural Language
Learning, pages 149–164. Association for Computational Linguistics, 2006.

Yoeng-Jin Chu and Tseng-Hong Liu. On the shortest arborescence of a directed graph.
Science Sinica, 14(1396-1400):270, 1965.

Michael Collins. Discriminative training methods for hidden markov models: eory
and experiments with perceptron algorithms. In Proceedings of the ACL-02 Confer-
ence on Empirical Methods in Natural Language Processing, volume 10, pages 1–8,
Philadelphia, PA, 2002. Association for Computational Linguistics.

59

Paul Cook and Suzanne Stevenson. An unsupervised model for text message normal-
ization. In Proceedings of the Workshop on Computational Approaches to Linguistic
Creativity, pages 71–78. Association for Computational Linguistics, 2009.

Koby Crammer and Yoram Singer. Ultraconservative online algorithms for multiclass
problems. e Journal of Machine Learning Research, 3:951–991, 2003.

AronCuloa and Jeffrey Sorensen. Dependency tree kernels for relation extraction. In
Proceedings of the 42nd AnnualMeeting on Association for Computational Linguistics,
page 423. Association for Computational Linguistics, 2004.

Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau of
Standards B, 71:233–240, 1967.

Bradley Efron and Robert Tibshirani. An Introduction to the Bootstrap. Chapman &
Hall, New York, 1993.

Jason M. Eisner. ree new probabilistic models for dependency parsing: An explo-
ration. In Proceedings of the 16th Conference on Computational Linguistics, volume 1,
pages 340–345. Association for Computational Linguistics, 1996.

Jennifer Foster, Özlem Çetinoglu, Joachim Wagner, Joseph Le Roux, Stephen Hogan,
Joakim Nivre, Deirdre Hogan, and Josef van Genabith. #hardtoparse: POS tagging
and parsing the twierverse. In Analyzing Microtext, 2011.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel Mills, Ja-
cob Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan, and Noah A.
Smith. Part-of-speech tagging for Twier: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages 42–47, 2011.

Bo Han and Timothy Baldwin. Lexical normalisation of short text messages: Makn
sens a #twier. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics, pages 368–378, 2011.

Bo Han, Paul Cook, and Timothy Baldwin. Automatically constructing a normal-
isation dictionary for microblogs. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning., pages 421–432, 2012.

60

Hideo Hirose and Liangliang Wang. Prediction of infectious disease spread using
Twier: A case of influenza. In Parallel Architectures, Algorithms and Programming
(PAAP), 2012 Fih International Symposium on, pages 100–105. IEEE, 2012.

Daniel Jurafsky and James H. Martin. Speech and language processing an introduc-
tion to natural language processing, computational linguistics, and speech. 2000.

Max Kaufmann. Syntactic normalization of Twier messages. In International Con-
ference on Natural Language Processing, Kharagpur, India, 2010.

Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling correction
program based on a noisy channel model. In Proceedings of the 13th Conference on
Computational Linguistics, volume 2, pages 205–210. Association for Computation-
al Linguistics, 1990.

Philipp Koehn. Statistical Machine Translation. Cambridge University Press, New
York, NY, USA, 1st edition, 2010.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-
erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,
et al. Moses: Open source toolkit for statistical machine translation. In Proceed-
ings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration
Sessions, pages 177–180. Association for Computational Linguistics, 2007.

Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency Parsing, volume 2 of
Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publish-
ers, 2009.

Mahew Lease, Eugene Charniak, Mark Johnson, and David McClosky. A look at
parsing and its applications. In Proceedings of the National Conference on Artificial
Intelligence, volume 21, pages 1642–1645, No. 2. Menlo Park, CA; Cambridge, MA,
2006. MIT Press.

Roger Levy. A noisy-channel model of rational human sentence comprehension un-
der uncertain input. In Proceedings of the 2008 Conference on Empirical Methods in
Natural Language Processing, pages 234–243. Association for Computational Lin-
guistics, 2008.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris
Watkins. Text classification using string kernels. e Journal of Machine Learn-
ing Research, 2:419–444, 2002.

61

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-
guage Processing. MIT press, 1999.

P.H. Mahews. Domain. In e Concise Oxford Dictionary of Linguis-
tics., 2013. URL http://www.oxfordreference.com/view/10.1093/acref/
9780199202720.001.0001/acref-9780199202720-e-957.

David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training for
parsing. In Proceedings of the main conference on human language technology confer-
ence of the North American Chapter of the Association of Computational Linguistics.,
pages 152–159. Association for Computational Linguistics, 2006.

DavidMcClosky, Eugene Charniak, andMark Johnson. Automatic domain adaptation
for parsing. In Human Language Technologies: e 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 28–
36. Association for Computational Linguistics, 2010.

Ryan T. McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajic. Non-projective
dependency parsing using spanning tree algorithms. In Proceedings of the confer-
ence on Human Language Technology and Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2005.

Stoyan Mihov and Klaus U. Schulz. Fast approximate search in large dictionaries.
Computational Linguistics, 30(4):451–477, 2004.

Petar Nikolaev Mitankin. Universal Levenshtein automata. Building and properties.
Masters thesis, 2005.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan T. McDonald, Jens Nilsson, Sebastian
Riedel, and Deniz Yuret. e CoNLL 2007 shared task on dependency parsing.
In Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL, pages 915–932,
2007a.

JoakimNivre, JohanHall, Jens Nilsson, Atanas Chanev, Gülsen Eryigit, Sandra Kübler,
Svetoslav Marinov, and Erwin Marsi. Maltparser: A language-independent system
for data-driven dependency parsing. Natural Language Engineering, 13(2):95–135,
2007b.

Franz Josef Och. Minimum error rate training in statistical machine translation. In
Proceedings of the 41st Annual Meeting on Association for Computational Linguistics,
volume 1, pages 160–167. Association for Computational Linguistics, 2003.

62

http://www.oxfordreference.com/view/10.1093/acref/9780199202720.001.0001/acref-9780199202720-e-957
http://www.oxfordreference.com/view/10.1093/acref/9780199202720.001.0001/acref-9780199202720-e-957

Franz Josef Och and Hermann Ney. A systematic comparison of various statistical
alignment models. Computational Linguistics, 29(1):19–51, 2003.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer, Kevin Gimpel, Nathan Schneider,
and Noah A Smith. Improved part-of-speech tagging for online conversational
text with word clusters. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 380–390. Association for Computational Linguistics, 2013.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method
for automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting of the Association for Computational Linguistics, pages 311–318. Association
for Computational Linguistics, 2002.

Slav Petrov, Pi-Chuan Chang, Michael Ringgaard, and Hiyan Alshawi. Uptraining for
accurate deterministic question parsing. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing., pages 705–713, 2010.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald. A universal part-of-speech tagset.
arXiv preprint arXiv:1104.2086, 2011.

Barbara Plank and Gertjan van Noord. Effective measures of domain similarity for
parsing. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1566–1576, 2011.

Robbert Paul Prins. Finite-state pre-processing for natural language analysis. PhD
thesis, University of Groningen, 2005.

Karthik Raghunathan and Stefan Krawczyk. Investigating SMS text normalization
using statistical machine translation. 2009.

Frank Rosenbla. e perceptron. Psychological Review, 65(6):386–408, 1958.

Adam Sadilek, Henry A. Kautz, and Vincent Silenzio. Predicting disease transmis-
sion from geo-tagged micro-blog data. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, Toronto, Ontario, Canada, 2012. AAAI Press.

Claude E. Shannon. A mathematical theory of communication. e Bell System Tech-
nical Journal, 27:379–423, 623–656, July, October 1948.

Libin Shen, Jinxi Xu, and Ralph Weischedel. A new string-to-dependency machine
translation algorithm with a target dependency language model. In Proceedings of

63

the 46th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 577–585. Association for Computational Linguistics,
2008.

Mahew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. A study of translation edit rate with targeted human annotation. In
Proceedings of the Association for Machine Translation in the Americas, pages 223–
231, 2006.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. In Proceedings of the
2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology, volume 1, pages 173–180. Association
for Computational Linguistics, 2003.

Daniel Zeman and Philip Resnik. Cross-language parser adaptation between related
languages. In Proceedings of e ird International Joint Conference on Natural
Language Processing (IJCNLP), pages 35–42, Hyderabad, India, 2008.

64

List of Tables

3.1 Properties of our test and development sets compared with the data
set from Foster et al. [2011] . 17

3.2 Common replacements and insertions in the test section of the data set 18

4.1 Influence of POS tagging on Foster et al. [2011] Twier development
set . 30

4.2 Influence of POS tagging on the development section of our test set . 31

5.1 Baseline parser performance with gold POS tags 36
5.2 Baseline parser performance on the Foster et al. [2011] development set 37
5.3 Influence of unsupervised lexical preprocessing on the Foster et al.

[2011] development set . 38
5.4 Influence of unsupervised lexical preprocessing on the Foster et al.

[2011] development set given perfect ill-formed word detection . . . 39
5.5 Oracle normalization parser performance on the Foster et al. [2011]

development set . 39
5.6 Influence of unsupervised lexical preprocessing on the development

section of our test set . 40
5.7 Corpus statistics for parallel text message corpora 45
5.8 Metrics for MT output quality for the normalization of two test data

sets . 47
5.9 Influence of MT-based preprocessing on three data sets 48
5.10 Influence of deterministic handling of Twier-specific syntax 50

6.1 Summary of parser performance on the development section of our
test set . 52

6.2 Error analysis on the development section of our test set 53

65

List of Figures

2.1 Simple dependency tree . 4
2.2 A projective dependency tree . 6
2.3 A non-projective dependency tree . 6
2.4 Schematic diagram of a general communication system [Shannon,

1948, p. 2] . 12

3.1 Example of a zero copula annotation 18
3.2 Example of a gold standard dependency graph with alignments . . . 19

6.1 Predicted dependency tree missing are 53

66

List of Algorithms

1 e MIRA learning algorithm . 8
2 e bootstrap procedure . 26

67

	Introduction
	Background and Related Work
	Dependency parsing
	Dependency grammar
	Data-driven dependency parsing
	Maximum-spanning tree parsing

	Parsing and domain adaptation
	Domain adaptation
	Methods for domain adaption

	Parsing and the noisy-channel model
	The noisy-channel model
	Sentence comprehension under noisy input

	Parsing and social media content
	Text-normalization of social media content

	Data Sets for Parsing of Noisy Content
	Data sets for parsing of noisy content
	Dependency parsing test set
	Acquisition and corpus statistics
	Annotation decisions

	Evaluation metrics
	Aligned precision and recall
	Statistical significance

	Part-of-Speech Tagging of Noisy Content
	Domain-specific part-of-speech tagging
	Combining multiple part-of-speech taggers
	Universal part-of-speech tagset
	N-best part-of-speech tagging

	Evaluation
	Implementations
	Results and discussion

	Text-Normalization in Parsing of Noisy Content
	Unsupervised lexical normalization
	Automatic lexical normalization
	Dictionary-based lexical normalization
	Lexical normalization in dependency parsing of Twitter data
	Results and discussion

	Text-normalization as machine translation
	Statistical machine translation using phrase-based models
	Corpora
	Methodology
	Results and discussion

	Twitter-specific preprocessing

	Discussion and Conclusion
	Evaluation
	Summary
	Error analysis
	Possible improvements

	Discussion
	Conclusion

	Bibliography
	List of Tables
	List of Figures
	List of Algorithms

