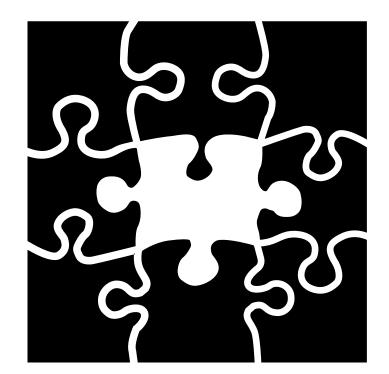


Machine Translation with Source-Predicted Target Morphology

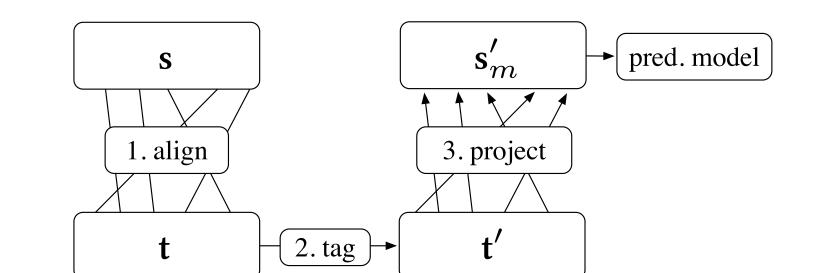
Joachim Daiber and Khalil Sima'an ILLC, University of Amsterdam

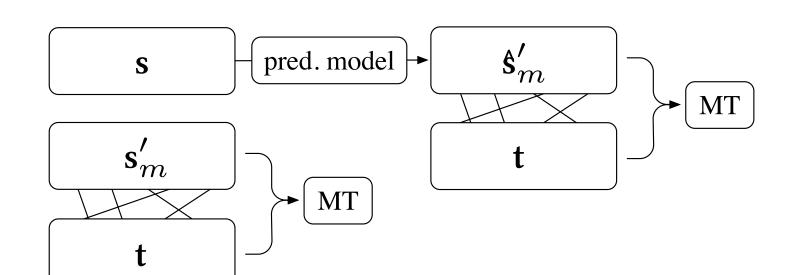


OVERVIEW

- Novel pipeline for translation into morphologically rich languages
- Source enriched with target morphology
- Challenges:

SYSTEM TRAINING AND TRANSLATION





- Predicting target morphology
- Learning salient attributes
- Integration into MT systems

MOTIVATION

- Knowing relevant morphological target properties helps translation
- Possible improvements in both lexical selection and reordering

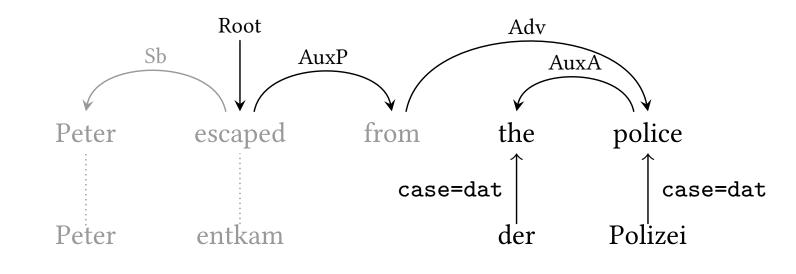
MORPHOLOGICAL ATTRIBUTES

Word type	Manual selection	Autom. selection		
noun	gender [†] number case	gender number case		
adj	gender [†] number [‡] case [‡] declension	gender number case synpos degree		
verb tense [*] mode [*]		_		

(a) Morphology projection and pred. model training.

(b) Machine translation system training.

MODELING TARGET-SIDE MORPHOLOGY



- Source-side dependency chains:
 - Word order might differ significantly
 - Source predicate-argument structure more informative for predicting target morph.
- $P(\mathbf{s}'_m \mid \tau, \mathbf{s})$: Source-side dependency chain

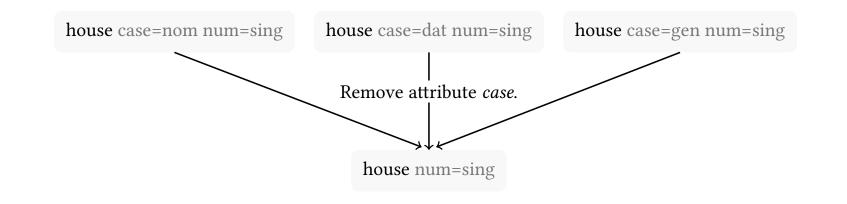
model to predict morph. enriched source \mathbf{s}'_m .

- Estimation: Coarse-to-fine CRF [1]
- Decoding: root \rightarrow leaves
- Features as in morph. tagging and additionally: dependency labels, number of children, source POS and child tokens.
- Best performance:
 - 5th order CRF
 - Trained on 50k-100k dependency chains
 - Dep. chains from non-isomorphic trees

† Transferred with lemma. *‡* Propagated from noun. *** Dropped in later work.

LEARNING SALIENT MORPHOLOGICAL ATTRIBUTES

- Consider only attributes helpful for language pair (less sparsity, better predictions)
- Salient attribute: attribute that enables better lexical selection
- Determine best attributes:
 - Simple IBM model 1 translation model: $P(\mathbf{t} \mid \mathbf{s}) = \sum_{\mathbf{s}'} P(\mathbf{s}'_m \mid \mathbf{s}) P(\mathbf{t} \mid \mathbf{s}'_m)$
- Find best attributes by merging tags [2]
- Merging tag occurrences \rightarrow removing morph. attribute



MT INTEGRATION

Strategies:

- Training on Viterbi predictions
- Training on gold projections
- Integration as sparse features, such as gender=fem+number=sing+case=dat X → -er X

EVALUATION

		Translation		Word order	Lexical choice
Morphological attributes	Training decor.	METEOR	BLEU	Kendall's $ au$	BLEU-1
No morphology	-	35.74	15.12	45.26	49.86
Manual selection	Predicted Projected	35.85 34.63 ^A	15.19 14.00 ^A	45.43 44.07	50.01 48.75
Autom. selection	Predicted Projected	35.99 ^{AC} 35.98 ^{AC}	15.23 ^в 15.22 ^с	45.88 45.89	50.27 50.27

REFERENCES

- [1] Thomas Müller, Helmut Schmid, and Hinrich Schütze. Efficient higher-order CRFs for morphological tagging. In *Proceedings of EMNLP* 2013, pages 322–332, Seattle, USA, 2013.
- [2] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact, and interpretable tree annotation. In *Proceedings of ACL 2006*, pages 433–440, Sydney, Australia, 2006.

^AStatistically significant against baseline at p < 0.05 ^BStatistically significant against baseline at p < 0.06 ^CStatistically significant against Manual selection at p < 0.05

Phrase-based MT setup for English-to-German.

ACKNOWLEDGEMENTS

The first author is supported by the EXPERT (EXPloiting Empirical appRoaches to Translation) Initial Training Network (ITN) of the European Union's Seventh Framework Programme.